Question

Two speakers generate harmonic sound waves that are in phase at 686 Hz. The speakers face...

Two speakers generate harmonic sound waves that are in phase at 686 Hz. The speakers face the same direction. The speed of sound is 343 m/s. Find the phase difference between the two waves received at the following locations.

(a) 4.80 m from each speaker
rad

(b) 2.42 m from one speaker and 3.72 m from the other
rad

(c) 2.42 m from one speaker and 4.80 m from the other
rad

(d) 2.42 m from one speaker and 3.37 m from the other

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two speakers, facing each other, produce coherent sound waves that interfere destructively at a point that...
Two speakers, facing each other, produce coherent sound waves that interfere destructively at a point that is ¾ of the way from one speaker to the other. If the speed of sound is 343 m/s, and the sound waves are emitted in phase at 880 Hz, which of the following is a possible distance between the two speakers? a. 2.3 m b. 0.58 m c. 1.56 m d. 77 cm e. 2.7 m
Two in phase speakers 2.0m a part in a plane are emitting 1800 Hz sound waves...
Two in phase speakers 2.0m a part in a plane are emitting 1800 Hz sound waves of equal intensity into a room where the speed of sound is 340 m/s. If the individual intensities of the loud speaker sound is I0, what is the intensity at this point in terms of I0? Ignore distance depedence of intensity in this problem.
Two identical loudspeakers are driven in phase by a common oscillator at 750 Hz and face...
Two identical loudspeakers are driven in phase by a common oscillator at 750 Hz and face each other at a distance of 1.24 m. Locate the points along the line joining the two speakers where relative minima of sound pressure amplitude would be expected. (Take the speed of sound in air to be 343 m/s. Choose one speaker as the origin and give your answers in order of increasing distance from this speaker. Enter 'none' in all unused answer boxes.)...
Two identical loudspeakers are driven in phase by a common oscillator at 750 Hz and face...
Two identical loudspeakers are driven in phase by a common oscillator at 750 Hz and face each other at a distance of 1.24 m. Locate the points along the line joining the two speakers where relative minima of sound pressure amplitude would be expected. (Take the speed of sound in air to be 343 m/s. Choose one speaker as the origin and give your answers in order of increasing distance from this speaker. Enter 'none' in all unused answer boxes.)...
Two speakers play a 500 Hz sound in phase. The speakers are arranged to face each...
Two speakers play a 500 Hz sound in phase. The speakers are arranged to face each other and are 6 m apart. How many points of constructive interference are there between the speakers? 0, 7, 9, or 10.
Two loudspeakers that emit sound of 686 Hz, but 900 out of phases are placed along...
Two loudspeakers that emit sound of 686 Hz, but 900 out of phases are placed along walls on the opposite sides of a gym and are separated by a distance of 25.00m. (I)If Janet starts walking from one speaker towards the other speaker, how far does she have to walk before she hears the first constructive interferences? (II) What is the phase difference when she is midway between the two speakers? The speed of sound in air is 343.0m/s.
Two loudspeakers emit coherent in phase sound waves with at a frequency of 68.8 Hz. The...
Two loudspeakers emit coherent in phase sound waves with at a frequency of 68.8 Hz. The speed of sound is 344.0 m/s. Point q is vertically located 2.0 m from the bottom speaker and 5.0 m from the top speaker. At point q, is there maximum constructive interference, complete destructive interference, or neither?? Explain your answer.
Two loudspeakers are in phase and both producing 458-Hz sound waves 3 meters from each other....
Two loudspeakers are in phase and both producing 458-Hz sound waves 3 meters from each other. A person initially stands 1.6 meters in front      of one of the speakers. The person then walks directly away from this speaker. How far will the person have walked when they hear the combined sounds from the two speakers reach a minimum in loudness for the third time? The power output of each speaker is 2.40 mW. What is the sound intensity level...
Two loudspeakers emit 500 Hz sound waves with an amplitude of 1cm. Speaker 2 is 1.00m...
Two loudspeakers emit 500 Hz sound waves with an amplitude of 1cm. Speaker 2 is 1.00m behind speaker 1, and the phase difference between the speakers is 90 degree . (I) What is the phase difference of the sound wave at a point 2.00 m in front of speaker 1? (II) What is the minimum distance between the two speakers such that the observer at this position hears the minimal sound? (6 points)
Speakers A and B are vibrating in phase. They are directly facing each other, are 1.29...
Speakers A and B are vibrating in phase. They are directly facing each other, are 1.29 m apart, and are each playing a 725 Hz tone. The speed of sound is 343 m/s. On the line between the speakers there are points where minimum sound intensity occurs. What is the distance of the nearest point from speaker A?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT