Question

Green light of wavelength 500 nm passes through a diffraction grating having 10−610−6 m between lines.  ...

Green light of wavelength 500 nm passes through a diffraction grating having 10−610−6 m between lines.  

How far away from the central bright spot is the next bright spot on a screen 2 m away (in meters)?

Suppose the light passing through the diffraction grating is composed of many different wavelengths. Rank the following colors according to the spacing between the bright spots of that color from least to greatest, so the least would have the smallest spacing between maxima.

a. red, yellow, green, blue, violet

b. green, blue, yellow, red, violet

c. violet, blue, green, yellow, red

d. blue, green, yellow, violet, red

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Light of wavelength 631 nm passes through a diffraction grating having 360 lines/mm . Part A.)...
Light of wavelength 631 nm passes through a diffraction grating having 360 lines/mm . Part A.) What is the total number of bright spots (indicating complete constructive interference) that will occur on a large distant screen? Solve this problem without finding the angles. (Hint: What is the largest that sin? can be? What does this imply for the largest value of m?) Express your answer as an integer. Part B.) What is the angle of the bright spot farthest from...
When laser light of wavelength 633.0 nm passes through a diffraction grating, the first bright spots...
When laser light of wavelength 633.0 nm passes through a diffraction grating, the first bright spots occur at ± 16.8 ∘ from the central maximum. Part A What is the line density (in lines/cm) of this grating? Part B How many additional pares of bright spots are there beyond the first bright spots?
Light from a Hydrogen lamp is focused through a diffraction grating with 770 lines/cm and the...
Light from a Hydrogen lamp is focused through a diffraction grating with 770 lines/cm and the diffraction pattern is shown on a screen that is 5.30 m away. You notice in the pattern that there are two distinct purple dots that are 16.46 cm and 17.70 cm from the central maximum, corresponding to the first-order maxima for two different wavelengths of light emitted by the lamp. What is the difference between the two wavelengths (in nm) corresponding to these purple...
1. (a) Consider light with a wavelength of 535 nm is passing through a diffraction grating...
1. (a) Consider light with a wavelength of 535 nm is passing through a diffraction grating with 924 lines per cm. At what distance from the central bright maximum will the 1st order maximum be seen on a screen placed 1.20 m from the diffraction grating. Give your answer in centimeters (cm) with 3 significant figures. (b) Unpolarized light with an intensity of 25.0 units is passed through two successive polarizing filters, the first with its polarization axis aligned with...
It is found that when blue light, λ = 470 nm, passes through a diffraction grating...
It is found that when blue light, λ = 470 nm, passes through a diffraction grating with a slit separation d, the diffraction pattern has a third order maximum at an angle θ = 44.8o. At what angle will red light, λ = 660 nm, have it's second order maximum when passed through the same diffraction grating. A. 29.4o B. 39.7o C. 41.3o D. 31.6o
A diffraction grating with 600 lines/mm is illuminated with light of wavelength 510 nm. A very...
A diffraction grating with 600 lines/mm is illuminated with light of wavelength 510 nm. A very wide viewing screen is 2.6 m behind the grating. What is the distance between the two m = 1 bright fringes? How many bright fringes can be seen on the screen?
A student shines a monochratic light through a diffraction grating with 4,000 lines per cm. the...
A student shines a monochratic light through a diffraction grating with 4,000 lines per cm. the distance between the grating and the screen is 1.2 m. The student measures the distance between the first order fringe and central maxima at 0.2cm. What is the frequency of the monochromatic light? Show work.
Calculate "d" using the following equation: d = (m*lamda)/sintheta. d = distance between lines on grating,...
Calculate "d" using the following equation: d = (m*lamda)/sintheta. d = distance between lines on grating, m = Order of diffraction, lambda = wavelength converted to metres) and theta = angle of deviation. Lambda 1 = 589.0mm and lambda 2 = 589.6mm (use the average value of 589.3mm) Data Sodium light, central position = 180°-0’ Colour Right θ (° ') Left θ (° ') Yellow 190°-1’ 170°-5’ Hydrogen light, central position = 180°-0’ Colour Right θ (° or ° ')...
Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.350 mm...
Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.350 mm wide. The diffraction pattern is observed on a screen 2.55 m away. Define the width of a bright fringe as the distance between the minima on either side. a) What is the width of the central bright fringe? b) What is the width of the first bright fringe on either side of the central one?
3. Red light with wavelength 680 nm passes through a pair of slits with a separation...
3. Red light with wavelength 680 nm passes through a pair of slits with a separation of 61 microns. 3a). Find the scattering angle corresponding to the first bright fringe. 3b). If the diffraction pattern is projected onto a screen a distance L = 11 meters away, what is the separation g on the screen between the unscattered beam and that first bright fringe?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT