Question

Two identical charges (+5.0 C each) are placed at the bottom corners of an equilateral triangle,...

Two identical charges (+5.0 C each) are placed at the bottom corners of an equilateral triangle, as shown below.

If the length of one side is 3.0 m, find the magnitude of the net force on a -12 C placed at the at the empty top corner.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Three identical point charges are located at the corners of an equilateral triangle that is 0.3m...
Three identical point charges are located at the corners of an equilateral triangle that is 0.3m on each side. If each charge is +20μC, than the magnitude of the net force (in N) on one of the charges due to the other two is..
(c16p20) Three equal charges are placed at the corners of an equilateral triangle 0.50 m on...
(c16p20) Three equal charges are placed at the corners of an equilateral triangle 0.50 m on a side. What are the magnitude of the force on each charge if the charges are each -5.5×10-9 C?
Three charges of magnitude 5uC are placed at the corner of an equilateral triangle. The top...
Three charges of magnitude 5uC are placed at the corner of an equilateral triangle. The top charge is negative and the bottom two charges are positive. The sides of the triangle are d= 6.4x10^-4 m. A) What is the magnitude of the force acting on the top charge? B) What is the direction of the force acting on the top charge? EXPLAIN:
Three identical charged particles sit at the corners of an equilateral triangle of side length 30...
Three identical charged particles sit at the corners of an equilateral triangle of side length 30 cm. Each particle has a charge of 8.5μc. The charges Q1 and Q2 are positive and Q3 is negative. A.) What are the magnitude and the direction of the net force on charge Q2 is: B.) What is the total electric potential energy of the charge combination is
Two charges Q1= -49 μC and   Q2= -26 μC are placed on the two corners of an...
Two charges Q1= -49 μC and   Q2= -26 μC are placed on the two corners of an equilateral triangle as shown in the figure below. If the side length of the triangle is a=90 mm, how much work is required to bring a third charge,  Q3= 34 μC from infinitely far away to the empty corner of the triangle? Please take k = 9.0 x 109 N.m2/C2 and express your answer using one decimal place in units of J or N.m. Please...
Three 6.8 micro coulomb charges are arranged at the corners of a an equilateral triangle with...
Three 6.8 micro coulomb charges are arranged at the corners of a an equilateral triangle with sides of length 0.3 meters. They are held in place initially. The charges have a mass of 10 grams. One side of the triangle is on the horizontal axis. Find : a) size of the force, in Newtons, acting on the charge at the top of the triangle due to the other two charges b) the direction of the force, in degrees, as measured...
Three 5.8 micro coulomb charges are arranged at the corners of a an equilateral triangle with...
Three 5.8 micro coulomb charges are arranged at the corners of a an equilateral triangle with sides of length 0.6 meters. They are held in place initially. The charges have a mass of 10 grams. One side of the triangle is on the horizontal axis. Find the: a) size of the force, in Newtons, acting on the charge at the top of the triangle due to the other two charges, b) the direction of the force, in degrees, as measured...
Three charged particles are placed at the corners of an equilateral triangle of side 1.20 m...
Three charged particles are placed at the corners of an equilateral triangle of side 1.20 m (see (Figure 1)). The charges are Q1 = 6.9 μC , Q2 = -9.3 μC , and Q3 = -4.9 μC . 1. Calculate the magnitude of the net force on particle 1 due to the other two. 2. Calculate the direction of the net force on particle 1 due to the other two. 3. Calculate the magnitude of the net force on particle...
Three charges are at the corners of an equilateral triangle, as shown in the figure below....
Three charges are at the corners of an equilateral triangle, as shown in the figure below. Calculate the electric field at a point midway between the two charges on the x-axis. (Let q1 = 2.00 μC, q2 = 2.00 μC,  and q3 = −3.50 μC.) Image: Three charged particles lie in the x y-coordinate plane at the vertices of an equilateral triangle with side length 0.500 m. Positive charge q2 is at the origin. Positive charge q1 is in the first...
Three charges are at the corners of an equilateral triangle, as shown in the figure below....
Three charges are at the corners of an equilateral triangle, as shown in the figure below. Calculate the electric field at a point midway between the two charges on the x-axis. (Let Let q1 = 7.00 μC, q2 = 4.50 μC, and q3 = −3.00 μC. magnitude =? (N/C) direction = ? (below the x-axis)