Question

   Do all electrons ejected from the metal surface have the same kinetic energy? Is this important...

   Do all electrons ejected from the metal surface have the same kinetic energy? Is this important for the interpretation of this lab?

Homework Answers

Answer #1

No it is not compulsory that all electron coming from metal surface has same kinetic energy when electron get minimum energy it get ejected from but from surface some electron at the surface they get easily ejected and some are inside so when they coming they loss some energy in collision with other electron and proton so they do not have same energy.

It is important for because it get idea about which electron first reach the other plate to flow of current.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Photoelectric effect: Do all electrons ejected from the metal surface have the same kinetic energy? If...
Photoelectric effect: Do all electrons ejected from the metal surface have the same kinetic energy? If so, why? Is this important for the interpretation of this lab?
In a photoelectric e↵ect experiment, the maximum kinetic energy of electrons ejected from a cesium metal...
In a photoelectric e↵ect experiment, the maximum kinetic energy of electrons ejected from a cesium metal plate is found to be 0.57eV when the plate is illuminated with 500 nm light. (a) Given what we know about the relation of wavelength and energy, how much energy does a single photon of 500 nm light have? (b) Given the results of this experiment, how much energy must the electron have used to break free of the atom? (c) When the same...
What is the maximum kinetic energy in eV of electrons ejected from sodium metal by 2.3...
What is the maximum kinetic energy in eV of electrons ejected from sodium metal by 2.3 x 102-nm EM radiation, given that the binding energy is 2.28 eV? Your answer should be a number with two decimal places, do not include unit.
When light of frequency f is shined on a given metal, electrons of maximum kinetic energy...
When light of frequency f is shined on a given metal, electrons of maximum kinetic energy of 3.25 eV are ejected from the metal. When light of frequency 4f is shined on the same metal, electrons of maximum energy 15.65 eV are ejected from the metal. Question: What is the work function of the metal?
Light with wavelegth 400 nanometers strikes a metal surface such that electrons are ejected with a...
Light with wavelegth 400 nanometers strikes a metal surface such that electrons are ejected with a maximum kinetic energy 2.13 x 10-19 Joules. Calculate the work function of this metal in electron volts. 2.0 eV 1.7 eV not enough information 2.8 eV 3.3 eV
When light with a wavelength of 258 nm is incident on a certain metal surface, electrons...
When light with a wavelength of 258 nm is incident on a certain metal surface, electrons are ejected with a maximum kinetic energy of 3.02 × 10-19 J. Determine the wavelength (in nm) of light that should be used to double the maximum kinetic energy of the electrons ejected from this surface.
When light with a wavelength of 221 nm is incident on a certain metal surface, electrons...
When light with a wavelength of 221 nm is incident on a certain metal surface, electrons are ejected with a maximum kinetic energy of 3.28 × 10−19 J. Determine the wavelength (in nm) of light that should be used to double the maximum kinetic energy of the electrons ejected from this surface.
What is the maximum kinetic energy of an ejected electron if magnesium metal is irradiated with...
What is the maximum kinetic energy of an ejected electron if magnesium metal is irradiated with 294 nm light? The threshold wave length for a magnesium metal surface is 339nm.
Problem 5 : Electrons on the surface of a metal can be ejected by shining light...
Problem 5 : Electrons on the surface of a metal can be ejected by shining light on them. However, a very bright red light source will not eject electrons, while even a very dim violet light source will eject electrons from the metal immediately. Why is this?
Electrons are ejected from sodium metal by any light that has a wavelength shorter than 544...
Electrons are ejected from sodium metal by any light that has a wavelength shorter than 544 nm. What is the kinetic energy of an electron (in J) that is ejected from sodium by light with a wavelength of 385 nm?