Question

Select all of the true statements: Hint: They are not all true. A converging lens could...

Select all of the true statements: Hint: They are not all true.

A converging lens could be used create an image with M=-2

A diverging lens could be used to create an image with M=-2

A converging lens could be used to create an image with M=+2

A diverging lens could be used to create an image with M=+2

A converging lens could be used to create an image with M = +.5

A diverging lens could be used to create an image with M = +.5

A converging lens could be used to create an image with M = -.5

A diverging lens could be used to create an image with M = -.5

Homework Answers

Answer #1

A diverging ( concave) lens can never produce a real image.

if M is negative means image is real

if M is positive means image is virtual

_______________

therefore, all options where diverging lens has negative magnification, are wrong !!

The converging lens can form a virtual image but they will always be larger than the object. so a magnification of + 0.5 is not possible.

Rest everything is correct !!

correct options are:

A converging lens could be used create an image with M=-2

A converging lens could be used to create an image with M=+2

A diverging lens could be used to create an image with M = +.5

A converging lens could be used to create an image with M = -.5

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A diverging lens with a focal length of -19.7 cm and a converging lens with a...
A diverging lens with a focal length of -19.7 cm and a converging lens with a focal length of 11.0 cm have a common central axis. Their separation is 39.5 cm. An object of height 1.1 cm is 26.4 cm in front of the diverging lens, on the common central axis. Find the location of the final image produced by the combination of the two lenses. Where is the image located as measured from the converging lens? What is the...
A converging lens with a focal length of 4.8 cm is located 24.8 cm to the...
A converging lens with a focal length of 4.8 cm is located 24.8 cm to the left of a diverging lens having a focal length of -15.0 cm. If an object is located 9.8 cm to the left of the converging lens, locate and describe completely the final image formed by the diverging lens. Where is the image located as measured from the diverging lens? What is the magnification? Also determine, with respect to the original object whether the image...
A converging lens and a diverging lens, separated by a distance of 30.0 cm, are used...
A converging lens and a diverging lens, separated by a distance of 30.0 cm, are used in combination. The converging lens has a focal length of 15.2 cm. The diverging lens is of unknown focal length. An object is placed 19.3 cm in front of the converging lens; the final image is virtual and is formed 12.0 cm in front of the diverging lens. What is the focal length of the diverging lens?
True or False a) A converging lens can produce a virtual, upright, enlarged image. b) A...
True or False a) A converging lens can produce a virtual, upright, enlarged image. b) A diverging lens always produces a virtual, upright, reduced image. c) For a converging lens an object has to be placed between the focal point and the lens in order to form a virtual image. d) A converging lens can never produce a virtual, upright, reduced image. A converging lens cannot produce a real, inverted reduced image. e) A diverging lens can produce a real,...
A converging lens with a focal length of 20 cm and a diverging lens with a...
A converging lens with a focal length of 20 cm and a diverging lens with a focal length of -34 cm are 74.0 cm apart. A 2.6-cm-tall object is 40 cm in front of the converging lens. 1. Calculate the distance between image and diverging lens. 2. Calculate the image height.
A converging lens of focal length 8.050 cm is 20.4 cm to the left of a...
A converging lens of focal length 8.050 cm is 20.4 cm to the left of a diverging lens of focal length -6.64 cm . A coin is placed 12.2 cm to the left of the converging lens. 1. Find the location of the coin's final image. a. to the left of the converging lens b. between the lenses c. to the right of the diverging lens 2. Find the magnification of the coin's final image. Express your answer using two...
A converging lens is placed at x = 0, a distance d = 11.0 cm to...
A converging lens is placed at x = 0, a distance d = 11.0 cm to the left of a diverging lens as in the figure below (where FC and FD locate the focal points for the converging and the diverging lens, respectively). An object is located at x = −1.10 cm to the left of the converging lens and the focal lengths of the converging and diverging lenses are 3.50 cm and −8.60 cm, respectively. HINT (a) Determine the...
A converging lens is placed at x = 0, a distance d = 11.0 cm to...
A converging lens is placed at x = 0, a distance d = 11.0 cm to the left of a diverging lens as in the figure below (where FC and FD locate the focal points for the converging and the diverging lens, respectively). An object is located at x = −1.10 cm to the left of the converging lens and the focal lengths of the converging and diverging lenses are 3.50 cm and −8.60 cm, respectively. HINT (a) Determine the...
A 1.8 cm tall object is placed 5 cm to the left of a converging lens...
A 1.8 cm tall object is placed 5 cm to the left of a converging lens (lens #1) with a focal length of 1.3 cm. To the right of this converging lens is a diverging lens (lens #2) that has a focal length of 2.6 cm. The diverging lens is placed 22.4 cm from the converging lens. Where is the final image, is it real or virtual, and is it upright or inverted?
A converging lens with focal length 10.0 cm is located 28.0 cm to the left of...
A converging lens with focal length 10.0 cm is located 28.0 cm to the left of a diverging lens with focal length - 8.0 cm. An object is placed 36 cm to the left of the converging lens. Where is the final image located relative to the diverging lens? Select one: a) at infinity b) 13.9 cm to the right c) 14.2 cm to the right d) 5 cm to the left
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT