Question

A 2.7 kg block is hanging from a string of 7 cm, from the ceiling. The...

A 2.7 kg block is hanging from a string of 7 cm, from the ceiling. The block is struck by a
9 g bullet. After the collision the block and bullet swing up to a height of 20 cm above the initial height.
(a) (5 points) What is the velocity of the block, immediately after being struck by the bullet?
(b) (5 points) What was the impulse delivered to the block, by the bullet? If the collision took 14 ms,
what was the average force applied by the bullet on the block?
(c) (5 points) What was the initial velocity of the bullet before the collision?
(d) (5 points) Aside from the obvious safety reasons, why might shooting a bullet in the air and mea-
suring the maximum height reached by the bullet be a worse method of measuring the speed of a
bullet coming out of a gun.

Homework Answers

Answer #1

(a) Now by Conservation of energy

(b) Impulse will be change in momentum. Initial momentum was zero of the block hence

Average force will be

(c) By conservation of momentum

(d) As already calculted, force acted due to the bullet is quite high wich can be harmfull.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
5. A bullet with a mass 0.850 g is fired in to a hanging block which...
5. A bullet with a mass 0.850 g is fired in to a hanging block which is free to swing (recall ballistic pendulum). Mass of the hanging block is 6.4 kg. The bullet comes to rest as it is fired to the block and the block + bullet then swing upward vertically displacing the center of mass of the system by 7. 2 cm before the system comes momentarily to rest at the end of the arc. What is the...
A pendulum is attached to the ceiling by two 1.7 m long strings. The 30 kg...
A pendulum is attached to the ceiling by two 1.7 m long strings. The 30 kg block is composed of wood and can be used to measure the initial speed of a 40 g bullet, by finding the height, h, for the resulting block’s swing after the bullet hits. If the strings attached to the block swing to a maximum angle of 4.7° with respect to the vertical, find A) The potential energy of the system (bullet and block) at...
A 1.40-kg wooden block rests on a table over a large hole as in the figure...
A 1.40-kg wooden block rests on a table over a large hole as in the figure below. A 4.60-g bullet with an initial velocity vi is fired upward into the bottom of the block and remains in the block after the collision. The block and bullet rise to a maximum height of 16.0 cm. (a) Calculate the initial velocity of the bullet from the information provided. (Let up be the positive direction.)
A m2 = 6 kg block of clay is suspended from the ceiling by a long...
A m2 = 6 kg block of clay is suspended from the ceiling by a long cord, as seen in the following figure. A m1 = 210 gram bullet, fired horizontally, imbeds itself into the clay, causing both masses to rise to a height of 4 m. What is the velocity of the bullet?
A 1.30-kg wooden block rests on a table over a large hole as in the figure...
A 1.30-kg wooden block rests on a table over a large hole as in the figure below. A 5.10-g bullet with an initial velocity vi is fired upward into the bottom of the block and remains in the block after the collision. The block and bullet rise to a maximum height of 23.0 cm. An illustration shows a large wooden block of mass M resting on the center of a table that has a large gap—smaller in width than the...
A small wooden block with mass 0.750 kg is suspended from the lower end of a...
A small wooden block with mass 0.750 kg is suspended from the lower end of a light cord that is 1.72 m long. The block is initially at rest. A bullet with mass 0.0136 kg is fired at the block with a horizontal velocity v0. The bullet strikes the block and becomes embedded in it. After the collision the combined object swings on the end of the cord. When the block has risen a vertical height of 0.700 m ,...
A small wooden block with mass 0.750 kg is suspended from the lower end of a...
A small wooden block with mass 0.750 kg is suspended from the lower end of a light cord that is 1.66 m long. The block is initially at rest. A bullet with mass 0.0128 kg is fired at the block with a horizontal velocity v0. The bullet strikes the block and becomes embedded in it. After the collision the combined object swings on the end of the cord. When the block has risen a vertical height of 0.775 m ,...
You shoot a 0.0050-kg bullet into a 2.0-kg wooden block at rest on a horizontal surface....
You shoot a 0.0050-kg bullet into a 2.0-kg wooden block at rest on a horizontal surface. After hitting dead center on a hard knot that runs through the block horizontally, the bullet pushes out the knot. It takes the bullet 1.0 ms to travel through the block, and as it does so, it experiences an x component of acceleration of -4.8× 10^5 m/s2. After the bullet pushes the knot out, the knot and bullet together have an x component of...
A 27.00-kg lead sphere is hanging from a hook by a thin wire 2.80 m long...
A 27.00-kg lead sphere is hanging from a hook by a thin wire 2.80 m long and is free to swing in a complete circle. Suddenly it is struck horizontally by a 5.00-kg steel dart that embeds itself in the lead sphere. What must be the minimum initial speed of the dart so that the combination makes a complete circular loop after the collision? Express your answer with the appropriate units.
A bullet with mass m(lowercase m) is fired into a block of wood with mass M(uppercase...
A bullet with mass m(lowercase m) is fired into a block of wood with mass M(uppercase M), suspended like a pendulum, and makes a completely inelastic collision with it. After the impact of the bullet, the block swings up to a maximum height h. Given the values of h = 5.00 cm = 0.0500 m, m = 6.75 g = 0.00675 kg, and M = 2.50 kg, (a) What is the (initial) velocity v_x of the bullet in m/s? (b)...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT