Question

3) A solenoid with 31 x 103 turns per meter, a cross sectional radius of 0.4...

3) A solenoid with 31 x 103 turns per meter, a cross sectional radius of 0.4 m, and a length of 0.2 meters is used as to form an inductor. Then a 9 x 103 volt battery (DC) is connected in series to this inductor, a resistor of 3 kilo-Ohms, and another resistor of 7 kilo-Ohms. After 13 milli-seconds, what is the power output of the battery in kilo-watts?

Homework Answers

Answer #1

First of all, we find the the inductance of this solenoid

L = uo N2 A / L

where N = nL ( n is turns / meter)

so,

L = uo n2 L A

L = 4e-7 * 310002 * 0.2 * pi * 0.42

L = 121.4 H

Now,

for series LR circuit, time constant

T = L/R

and

I = Io ( 1 - e- t / T )

R = 7000 + 3000 = 10,000 ohms ( series)

so,

T = L / R = 121.4 / 10000 = 0.012414 sec

so,

P = VI

P = V * Io ( 1 - e- t / T )

P = V * V / R ( 1 - e- t / T )

P = V2 / R ( 1 - e- t / T )

P = 90002 / 10000 ( 1 - e-13e-3 / 0.01214 )

P = 90002 / 10000 * ( 0.657)

P = 5323.96 Watts

OR

P = 5.323 Kilo - watts

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A solenoid with 45 x 103 turns per meter, a cross sectional radius of 0.4 m,...
A solenoid with 45 x 103 turns per meter, a cross sectional radius of 0.4 m, and a length of 0.2 meters is used as to form an inductor. Then a 9 x 103 volt battery (DC) is connected in series to this inductor, a resistor of 6 kilo-Ohms, and another resistor of 7 kilo-Ohms. After 12 milli-seconds, what is the power output of the battery in kilo-watts?
3) A solenoid with 44 x 103 turns per meter, a cross sectional radius of 0.5...
3) A solenoid with 44 x 103 turns per meter, a cross sectional radius of 0.5 m, and a length of 0.2 meters is used as to form an inductor. Then a 9 x 103 volt battery (DC) is connected in series to this inductor, a resistor of 4 kilo-Ohms, and another resistor of 6 kilo-Ohms. After 14 milli-seconds, what is the power output of the battery in kilo-watts?
A solenoid with 39 x 103 turns per meter, a cross sectional radius of 0.3 m,...
A solenoid with 39 x 103 turns per meter, a cross sectional radius of 0.3 m, and a length of 0.3 meters is used as to form an inductor. Then a 5 x 103 volt battery (DC) is connected in series to this inductor, a resistor of 6 kilo-Ohms, and another resistor of 6 kilo-Ohms. After 14 milli-seconds, what is the power output of the battery in kilo-watts?
part A A solenoid with 44 x 103 turns per meter, a cross sectional radius of...
part A A solenoid with 44 x 103 turns per meter, a cross sectional radius of 0.5 m, and a length of 0.2 meters is used as to form an inductor. Then a 8 x 103 volt battery (DC) is connected in series to this inductor, a resistor of 2 kilo-Ohms, and another resistor of 8 kilo-Ohms. After 14 milli-seconds, what is the power output of the battery in kilo-watts? part Aa. A battery (DC battery) is connected in series...
A solenoid with 29 x 10^3 turns per meter, a cross sectional radius of 0.5 m,...
A solenoid with 29 x 10^3 turns per meter, a cross sectional radius of 0.5 m, and a length of 0.3 meters is used as to form an inductor. Then a 8 x 10^3 volt battery (DC) is connected in series to this inductor, a resistor of 4 kilo-Ohms, and another resistor of 4 kilo-Ohms. After 11 milli-seconds, what is the power output of the battery in kilo-watts?
A long solenoid is used as an inductor in an R-L circuit. The solenoid has 165/m...
A long solenoid is used as an inductor in an R-L circuit. The solenoid has 165/m and a cross-sectional radius of 0.14 meters. It is placed into a R-L circuit with a 18 Ohm resistor and a battery initially. The battery is removed, the initial current is 3 amps, and 8 milli-seconds after the battery has been removed, the voltage across the inductor is 7 volts. What is the length of the solenoid in meters?
An ideal solenoid with 875 turns is 0.250 m long and has a cross-sectional area of...
An ideal solenoid with 875 turns is 0.250 m long and has a cross-sectional area of 3.00 ✕ 10−3 m2. (a) What is the inductance of this solenoid? H (b) If we connect this solenoid in series with a 12.0-V battery and a 195-Ω resistor, what is the maximum value of the current? A (c) Assuming the current is zero when t = 0 as the circuit elements are connected, at what time will the current reach 50% of its...
A solenoid runs though the x-y plane with 3/m x 104 (turns per meter) with current...
A solenoid runs though the x-y plane with 3/m x 104 (turns per meter) with current that is always counter-clockwise. Initially, the current is 5 amps for the solenoid. A square wire with sides of 0.49 meters is wrapped 21 times and is placed in the x-y plane within the solenoid. Due to the current changing in the solenoid over a time of 0.30 seconds, the average induced current creates a magnetic moment of 73.7 x 10-3 A m2 in...
A solenoid runs though the x-y plane with 3/m x 104 (turns per meter) with current...
A solenoid runs though the x-y plane with 3/m x 104 (turns per meter) with current that is always counter-clockwise. Initially, the current is 5 amps for the solenoid. A square wire with sides of 0.49 meters is wrapped 21 times and is placed in the x-y plane within the solenoid. Due to the current changing in the solenoid over a time of 0.30 seconds, the average induced current creates a magnetic moment of 73.7 x 10-3 A m2 in...
A coil of 40 turns is wrapped around a long solenoid of cross-sectional area 7.5*10^-3. The...
A coil of 40 turns is wrapped around a long solenoid of cross-sectional area 7.5*10^-3. The solenoid is 0.50 m long and has 500 turns. The current in the solenoid is given by the function: I(t)=3t-5(A). (a) What is the induced emf in the coil? (b) The outer coil is replaced by a coil of 40 turns whose radius is three times that of the solenoid. What is the induced emf in this coil?