Question

Constant amount of ideal gas is kept inside a cylinder by a piston. Then the gas...

Constant amount of ideal gas is kept inside a cylinder by a piston. Then the gas expands isobarically. Compare the initial (i) and the final (f) physical quantities of the gas to each other.

The internal energy Uf is ... Ui.

The temperature Tf is ... Ti.

The volume Vf is ... Vi.

The entropy Sf is ... Si.

The pressure pf is ... pi.

Homework Answers

Answer #1

A) As pressure is kept constant there according to ideal gas law volume is directly proportional to the temperature. Since gas is expanding therefore it's volume is increasing. therefore temperature will also increase. Internal energy of gas is a function of the gas temperature. i.e. Uf > Ui

B) From above explanation Tf > Ti

C) As gas is expanding; Vf > Vi

D) Entropy is measurement of the disturbance in the system. entropy will increase with temperature. Sf > Si

E) Pf = Pi , since pressure is kept constant.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Constant amount of ideal gas is kept inside a cylinder by a piston. Then the gas...
Constant amount of ideal gas is kept inside a cylinder by a piston. Then the gas expands adiabatically. Compare the initial (i) and the final (f) physical quantities of the gas to each other. The pressure pf is ... pi. The temperature Tf is ... Ti. The internal energy Uf is ... Ui. The entropy Sf is ... Si. The volume Vf is ... Vi.
Constant amount of ideal gas is kept inside a cylinder by a piston. Then the gas...
Constant amount of ideal gas is kept inside a cylinder by a piston. Then the gas expands adiabatically. Compare the initial (i) and the final (f) physical quantities of the gas to each other. The pressure pf is ... pi. The temperature Tf is ... Ti. The internal energy Uf is ... Ui. The entropy Sf is ... Si. The volume Vf is ... Vi.
Superheated steam at 0.10MPa and 300C inside a cylinder of volume 3.0 liters drives a piston...
Superheated steam at 0.10MPa and 300C inside a cylinder of volume 3.0 liters drives a piston in a steam locomotive cylinder. It expands isobarically. By what multiple can the volume grow before the system becomes a saturated liquid-gas mixture? At this point, how much boundary work will have been done on the piston?
A cylinder of monatomic ideal gas is sealed in a cylinder by a piston. Initially, the...
A cylinder of monatomic ideal gas is sealed in a cylinder by a piston. Initially, the gas occupies a volume of 3.00 L and the pressure is initially 105 kPa. The cylinder is placed in an oven that maintains the temperature at a constant value. 65.0 J of work is then done on the piston, compressing the gas (in other words, the gas does −65.0 J of work). The work is done very slowly so that the gas maintains a...
1- A certain amount of O2, as an ideal gas, is contained in a cylinder-piston system...
1- A certain amount of O2, as an ideal gas, is contained in a cylinder-piston system and develops a process from T1 = 300 K, P1 = 200 kPa to T2 = 1500 K and P2 = 150 kPa. Determine the specific entropy change in kJ / (kg K). 2- A certain amount of H2O in a closed rigid cylinder is cooled from T1 = 800 ° F and P1 = 100 lbf / in2 to P2 = 20 lbf...
An ideal monatomic gas is contained within a cylinder by a moveable piston. The gas is...
An ideal monatomic gas is contained within a cylinder by a moveable piston. The gas is in thermal contact with a heat bath initially at 310 K. What is the change in molar entropy if the gas is heated to 600 K if: A. The piston is blocked B. The piston is allowed to move freely against atmospheric pressure
A certain amount of chlorine gas was placed inside a cylinder with a movable piston at...
A certain amount of chlorine gas was placed inside a cylinder with a movable piston at one end. The initial volume was 3.00 L and the initial pressure of chlorine was 1.64 atm . The piston was pushed down to change the volume to 1.00 L. Calculate the final pressure of the gas if the temperature and number of moles of chlorine remain constant. Enter a numerical answer only, in terms of atm. Please show all work
One mole of an ideal gas CP=7R2 in a closed piston/cylinder arrangement is compressed from Ti=200...
One mole of an ideal gas CP=7R2 in a closed piston/cylinder arrangement is compressed from Ti=200 K , Pi=0.5 MPa to Pf=5 MPa by following paths:. ADIABATIC path ISOTHERMAL path Calculate ΔU, ΔH, Q and WEC for both paths. NOTE: Keep the answers in terms of ‘R’.
A 19.0-L volume of an ideal gas in a cylinder with a piston is at a...
A 19.0-L volume of an ideal gas in a cylinder with a piston is at a pressure of 2.8 atm. Enough weight is suddenly removed from the piston to lower the external pressure to 1.4 atm. The gas then expands at constant temperature until its pressure is 1.4 atm. Find the change in enthalpy, ?H, for this change in state. Express your answer using two significant figures. Find the heat, q, associated with this change in state. Express your answer...
A cylinder with a piston contains 0.100 mol of nitrogen at 2.00×105 Pa and 320 K...
A cylinder with a piston contains 0.100 mol of nitrogen at 2.00×105 Pa and 320 K . The nitrogen may be treated as an ideal gas. The gas is first compressed isobarically to half its original volume. It then expands adiabatically back to its original volume, and finally it is heated isochorically to its original pressure. A) Find the work done by the gas during the initial compression B) Find the heat added to the gas during the initial compression...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT