Question

Constant amount of ideal gas is kept inside a cylinder by a piston. Then the gas...

Constant amount of ideal gas is kept inside a cylinder by a piston. Then the gas expands isobarically. Compare the initial (i) and the final (f) physical quantities of the gas to each other.

The internal energy Uf is ... Ui.

The temperature Tf is ... Ti.

The volume Vf is ... Vi.

The entropy Sf is ... Si.

The pressure pf is ... pi.

Homework Answers

Answer #1

A) As pressure is kept constant there according to ideal gas law volume is directly proportional to the temperature. Since gas is expanding therefore it's volume is increasing. therefore temperature will also increase. Internal energy of gas is a function of the gas temperature. i.e. Uf > Ui

B) From above explanation Tf > Ti

C) As gas is expanding; Vf > Vi

D) Entropy is measurement of the disturbance in the system. entropy will increase with temperature. Sf > Si

E) Pf = Pi , since pressure is kept constant.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Constant amount of ideal gas is kept inside a cylinder by a piston. Then the gas...
Constant amount of ideal gas is kept inside a cylinder by a piston. Then the gas expands adiabatically. Compare the initial (i) and the final (f) physical quantities of the gas to each other. The pressure pf is ... pi. The temperature Tf is ... Ti. The internal energy Uf is ... Ui. The entropy Sf is ... Si. The volume Vf is ... Vi.
Constant amount of ideal gas is kept inside a cylinder by a piston. Then the gas...
Constant amount of ideal gas is kept inside a cylinder by a piston. Then the gas expands adiabatically. Compare the initial (i) and the final (f) physical quantities of the gas to each other. The pressure pf is ... pi. The temperature Tf is ... Ti. The internal energy Uf is ... Ui. The entropy Sf is ... Si. The volume Vf is ... Vi.
Constant amount of ideal gas is kept inside a cylinder by a piston. Then the gas...
Constant amount of ideal gas is kept inside a cylinder by a piston. Then the gas expands adiabatically. Compare the initial (i) and the final (f) physical quantities of the gas to each other. (Option choices for fill in the blank are equal to, less than, or greater than) The temperature Tf is ... Ti. The volume Vf is ... Vi. The pressure pf is ... pi. The internal energy Uf is ... Ui. The entropy Sf is ... Si.
Constant amount of ideal gas is kept inside a cylinder by a piston. Then the gas...
Constant amount of ideal gas is kept inside a cylinder by a piston. Then the gas expands adiabatically. Compare the initial (i) and the final (f) physical quantities of the gas to each other. equal to less than greater than  The entropy Sf is ... Si. equal to less than greater than  The internal energy Uf is ... Ui. equal to less than greater than  The pressure pf is ... pi. equal to less than greater than  The volume Vf is ... Vi. equal...
A cylinder with a moveable piston on top, free to move up and down, contains one...
A cylinder with a moveable piston on top, free to move up and down, contains one mole of an ideal gas initially at a temperature of Ti = 3.8°C. The cylinder is heated at a constant pressure of 1.00 atm, and it expands to seven times its original volume. (a) Calculate the new temperature Tf of the gas (in K). (No Response) K (b) Calculate the work done (in kJ) on the gas during the expansion.
Superheated steam at 0.10MPa and 300C inside a cylinder of volume 3.0 liters drives a piston...
Superheated steam at 0.10MPa and 300C inside a cylinder of volume 3.0 liters drives a piston in a steam locomotive cylinder. It expands isobarically. By what multiple can the volume grow before the system becomes a saturated liquid-gas mixture? At this point, how much boundary work will have been done on the piston?
A cylinder contains an ideal gas at the temperature of 300 K and is closed by...
A cylinder contains an ideal gas at the temperature of 300 K and is closed by a movable piston. The gas, which is initially at a pressure of 3 atm occupying a volume of 30 L, expands isothermally to a volume of 80 L. The gas is then compressed isobarically, returning to its initial volume of 30 L. Calculate the work done by gas: a) in isothermal expansion; b) in isobaric compression, c) in the whole process; and d) Calculate...
A cylinder of monatomic ideal gas is sealed in a cylinder by a piston. Initially, the...
A cylinder of monatomic ideal gas is sealed in a cylinder by a piston. Initially, the gas occupies a volume of 3.00 L and the pressure is initially 105 kPa. The cylinder is placed in an oven that maintains the temperature at a constant value. 65.0 J of work is then done on the piston, compressing the gas (in other words, the gas does −65.0 J of work). The work is done very slowly so that the gas maintains a...
1- A certain amount of O2, as an ideal gas, is contained in a cylinder-piston system...
1- A certain amount of O2, as an ideal gas, is contained in a cylinder-piston system and develops a process from T1 = 300 K, P1 = 200 kPa to T2 = 1500 K and P2 = 150 kPa. Determine the specific entropy change in kJ / (kg K). 2- A certain amount of H2O in a closed rigid cylinder is cooled from T1 = 800 ° F and P1 = 100 lbf / in2 to P2 = 20 lbf...
An ideal monatomic gas is contained within a cylinder by a moveable piston. The gas is...
An ideal monatomic gas is contained within a cylinder by a moveable piston. The gas is in thermal contact with a heat bath initially at 310 K. What is the change in molar entropy if the gas is heated to 600 K if: A. The piston is blocked B. The piston is allowed to move freely against atmospheric pressure