Question

A block with mass m=4.7 kg is on a frictionless incline surface (incline angle =44 degree)....

A block with mass m=4.7 kg is on a frictionless incline surface (incline angle =44 degree). An external force of F is applied parallel to inclined surface. If the block moves with a constant speed upward, find the magnitude of the applied force. Take g=9.81 m/s2and round your answer to 1 decimal place.

Homework Answers

Answer #1

Let the magnitude of the applied force is F.

The mass of the block is m=4.7 kg.

The value of g=9.81 m/s2.

The block moves with a constant speed that means the net force along with the incline acting on the block are zero.

  

  

The magnitude of the applied force is 32.0 N.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 8 kg block slides down a frictionless incline making an angle of 20◦ with the...
A 8 kg block slides down a frictionless incline making an angle of 20◦ with the horizontal. The acceleration of gravity is 9.81 m/s2 . a) Find the work done by the gravitational force when the block slides 5.9 m (measured along the incline). b) What is the total work done on the block? c) What is the speed of the block after it has moved 5.9 m if it starts from rest? d) What is its speed after 5.9...
A small block travels up a frictionless incline that is at an angle of 30.0° above...
A small block travels up a frictionless incline that is at an angle of 30.0° above the horizontal. The block has speed 4.15 m/s at the bottom of the incline. Assume g = 9.80 m/s2. How far up the incline (measured parallel to the surface of the incline) does the block travel before it starts to slide back down?
A small block travels up a frictionless incline that is at an angle of 30.0° above...
A small block travels up a frictionless incline that is at an angle of 30.0° above the horizontal. The block has speed 1.20 m/s at the bottom of the incline. Assume g = 9.80 m/s2. How far up the incline (measured parallel to the surface of the incline) does the block travel before it starts to slide back down?
A block of weight w = 30.0 N sits on a frictionless inclined plane, which makes...
A block of weight w = 30.0 N sits on a frictionless inclined plane, which makes an angle θ = 35.0 ∘ with respect to the horizontal, as shown in the figure. (Figure 1) A force of magnitude F = 17.2 N , applied parallel to the incline, is just sufficient to pull the block up the plane at constant speed. PLEASE PUT ALL ANSWERS IN JOULES Part A The block moves up an incline with constant speed. What is...
A block of weight w = 25.0 N sits on a frictionless inclined plane, which makes...
A block of weight w = 25.0 N sits on a frictionless inclined plane, which makes an angle θ = 20.0 ∘ with respect to the horizontal, as shown in the figure. (Figure 1)A force of magnitude F = 8.55 N , applied parallel to the incline, is just sufficient to pull the block up the plane at constant speed. Part B What is Wg, the work done on the block by the force of gravity w⃗  as the block moves...
A block is pushed up a frictionless 30 incline by an applied force as shown. If...
A block is pushed up a frictionless 30 incline by an applied force as shown. If F = 25 N and M = 3.0 kg, what is the magnitude of the resulting acceleration of the block? What is the magnitude of the normal force exerted by the surface on the block?
1. A block of mass is pulled up an incline. F= 34 N, mass= 6kg and...
1. A block of mass is pulled up an incline. F= 34 N, mass= 6kg and angle= 24 ˚. What is the acceleration of the block if the coefficient of kinetic friction between the block and incline is 0.12. 2. A 4.0Kg block slides down a 37° incline at a constant speed. 16N force is applied up and parallel to the incline. What is the coefficient of kinetic friction between the block and the surface of the incline?
Name:__________________________________________Section____ A block of mass ? = 12.0 kg is released from rest on an incline...
Name:__________________________________________Section____ A block of mass ? = 12.0 kg is released from rest on an incline angled at θ = 30 degrees. The block slides down and incline of length ? = 1.40 m along the incline, which has a coefficient of kinetic friction between the incline and the block of ?? = 0.180. The block then slides on a horizontal frictionless surface until it encounters a spring with a spring constant of ? = 205 N/m. Refer to the...
A block of mass m = 3.3 kg is on an inclined plane with a coefficient...
A block of mass m = 3.3 kg is on an inclined plane with a coefficient of friction μ1 = 0.39, at an initial height h = 0.53 m above the ground. The plane is inclined at an angle θ = 44°. The block is then compressed against a spring a distance Δx = 0.13 m from its equilibrium point (the spring has a spring constant of k1 = 35 N/m) and released. At the bottom of the inclined plane...
A block of weight w = 30.0 N sits on a frictionless inclined plane, which makes...
A block of weight w = 30.0 N sits on a frictionless inclined plane, which makes an angle θ = 33.0 ∘ with respect to the horizontal, as shown in the figure. (Figure 1)A force of magnitude F = 16.3 N , applied parallel to the incline, is just sufficient to pull the block up the plane at constant speed. PART A The block moves up an incline with constant speed. What is the total work WtotalWtotalW_total done on the...