Question

An athlete, of mass 67 kg, accelerates on a horizontal track from a standing start to...

An athlete, of mass 67 kg, accelerates on a horizontal track from a standing start to a speed of 13 m/s. Calculate the efficiency of the athlete if they consume 20,000 J of chemical energy in the process.

Homework Answers

Answer #1

please Upvote. otherwise, do comment if you face any problem , confusion or any error.Thanks. stay safe and blessed

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A track athlete performs a standing long jump (m = 81 kg). The maximum average ground...
A track athlete performs a standing long jump (m = 81 kg). The maximum average ground reaction force they can generate is 1000 N for 0.3 seconds. If their shoes have a coefficient of friction of 0.75, what is the maximum horizontal distance they can jump?
Two low-friction physics demo carts collide on a horizontal track. The first cart, with a mass...
Two low-friction physics demo carts collide on a horizontal track. The first cart, with a mass of 0.150 kg , is moving to the right with a speed of 0.800 m/s . The second cart, with a mass of 0.298 kg , is moving to the left with a speed of 2.27 m/s . The carts collide in an elastic collision, such that the total klinetic energy after the collsion is equal to the total kinetic energy before the collision....
A particle with mass 1.23 kg oscillates horizontally at the end of a horizontal spring. A...
A particle with mass 1.23 kg oscillates horizontally at the end of a horizontal spring. A student measures an amplitude of 0.847 m and a duration of 125 s for 69 cycles of oscillation. Find the frequency, ?, the speed at the equilibrium position, ?max, the spring constant, ?, the potential energy at an endpoint, ?max, the potential energy when the particle is located 41.3% of the amplitude away from the equiliibrium position, ?, and the kinetic energy, ?, and...
A block of mass 3.40 kg is placed against a horizontal spring of constant k =...
A block of mass 3.40 kg is placed against a horizontal spring of constant k = 725 N/m and pushed so the spring compresses by 0.0400 m. HINT (a) What is the elastic potential energy of the block-spring system (in J)? J (b) If the block is now released and the surface is frictionless, calculate the block's speed (in m/s) after leaving the spring. m/s
A block of mass 2.80 kg is placed against a horizontal spring of constant k =...
A block of mass 2.80 kg is placed against a horizontal spring of constant k = 805 N/m and pushed so the spring compresses by 0.0800 m. A) What is the elastic potential energy of the block-spring system (in J)? __________ J B) If the block is now released and the surface is frictionless, calculate the block's speed (in m/s) after leaving the spring. _______ M/S
A skater of mass 60.0 kg standing on ice throws a stone of mass 7.69 kg...
A skater of mass 60.0 kg standing on ice throws a stone of mass 7.69 kg with a speed of 20.3 m/s in a horizontal direction. Find the distance over which the skater will move in the opposite direction if the coefficient of kinetic friction between the skater and the ice is 0.03.
An air-track glider of mass 0.100 kg is attached to the end of a horizontal air...
An air-track glider of mass 0.100 kg is attached to the end of a horizontal air track by a spring with force constant 20.0 N/m. Initially the spring is unstreched and the glider is moving at 1.50 m/s to the right. With the air track turned off, the coefficient of kinetic friction is ?k=0.47. It can be shown that with the air track turned off, the glider travels 8.6 cm before it stops instantaneously. Part A) How large would the...
A cylinder of mass 8.0 kg rolls without slipping on a horizontal surface. At a certain...
A cylinder of mass 8.0 kg rolls without slipping on a horizontal surface. At a certain instant its center of mass has a speed of 15.0 m/s. (a) Determine the translational kinetic energy of its center of mass. J (b) Determine the rotational kinetic energy about its center of mass. J (c) Determine its total energy.
A loaded ore car has a mass of 950 kg and rolls on rails with negligible...
A loaded ore car has a mass of 950 kg and rolls on rails with negligible friction. It starts from rest and is pulled up a mine shaft by a cable connected to a winch. The shaft is inclined at 28.5° above the horizontal. The car accelerates uniformly to a speed of 2.05 m/s in 12.5 s and then continues at constant speed. (a) What power must the winch motor provide when the car is moving at constant speed? kW...
A train, with an initial velocity of 15 m s−1 along a straight track, accelerates at...
A train, with an initial velocity of 15 m s−1 along a straight track, accelerates at a constant 0.25 m s−2. Determine how far it travels before reaching a velocity of 20 m s−1. A smooth slope makes an angle of 65o to the horizontal. Determine the acceleration due to gravity down the slope. A 20-kg box sits on a flat surface. The coefficient of static friction is 0.73. Calculate the maximum static friction. A wheel has a diameter of...