Question

An Atwood machine consists of two masses, mA = 65 kg and mB = 75 kg...

An Atwood machine consists of two masses, mA = 65 kg and mB = 75 kg , connected by a massless inelastic cord that passes over a pulley free to rotate. The pulley is a solid cylinder of radius R = 0.45 m and mass 6.0 kg. Determine the acceleration of each mass

Homework Answers

Answer #1

let

m = 6 kg, R = 0.45 m

let a is the acceleration of blocks and alfa is the angular acceleration of the pulley.

let TA and TB are the tensions in the strings connected to block A and B respectively.

net force acting on B, FnetB = mB*g - TB

mB*a = mB*g - TB

TB = mB*g - mB*a ------(1)

similarly, TA = mA*g + mA*a ----(2)

net torque acting on pulley, (TB - TA)*R = I*alfa

(mB*g - mB*a - mA*g - mA*a)*R = (1/2)*m*R^2*a/R

(mB - mA)*g = (m/2 + mA + mB)*a

a = (mB - mA)*g/(m/2 + mA + mB)

= (75 - 65)*9.8/(6/2 + 65 + 75)

= 0.685 m/s^2

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An Atwood machine consists of two masses, mA = 64 kg and mB = 73 kg...
An Atwood machine consists of two masses, mA = 64 kg and mB = 73 kg , connected by a massless inelastic cord that passes over a pulley free to rotate (Figure 1). The pulley is a solid cylinder of radius R = 0.45 m and mass 5.0 kg . [Hint: The tensions FTA and FTB are not equal.] Part A Determine the acceleration of each mass. Express your answer to two significant figures and include the appropriate units. part...
An Atwood’s machine consists of two masses, mA = 1.55 kg and mB = 3.59 kg...
An Atwood’s machine consists of two masses, mA = 1.55 kg and mB = 3.59 kg which are connected by a massless inelastic cord that passes over a pulley. If the pulley has radius 0.03 m and moment of inertia 3.04 kg m2 about its axle, determine the magnitude of tension force on mB, FTB in N.
Two masses, mA = 32.0 kg and mB = 41.0 kg are connected by a rope...
Two masses, mA = 32.0 kg and mB = 41.0 kg are connected by a rope that hangs over a pulley (as in the figure(Figure 1)). The pulley is a uniform cylinder of radius R = 0.316 m and mass 3.4 kg . Initially, mA is on the ground and mB rests 2.5 m above the ground. a.If the system is now released, use conservation of energy to determine the speed of mB just before it strikes the ground. Assume...
An Atwood's machine consists of blocks of masses m1 = 12.0 kg and m2 = 22.0...
An Atwood's machine consists of blocks of masses m1 = 12.0 kg and m2 = 22.0 kg attached by a cord running over a pulley as in the figure below. The pulley is a solid cylinder with mass M = 7.60 kg and radius r = 0.200 m. The block of mass m2 is allowed to drop, and the cord turns the pulley without slipping. Two objects, blocks labeled m1 and m2, are connected to a cord which is hung...
An Atwood's machine consists of blocks of masses m1 = 13.0 kg and m2 = 19.0...
An Atwood's machine consists of blocks of masses m1 = 13.0 kg and m2 = 19.0 kg attached by a cord running over a pulley as in the figure below. The pulley is a solid cylinder with mass M = 9.20 kg and radius r = 0.200 m. The block of mass m2 is allowed to drop, and the cord turns the pulley without slipping. (a) Why must the tension T2 be greater than the tension T1? This answer has...
An Atwood's machine consists of two masses, m1 and m2, connected by a string that passes...
An Atwood's machine consists of two masses, m1 and m2, connected by a string that passes over a pulley. If the pulley is a disk of radius R and mass M, find the acceleration of the masses. Express your answer in terms of the variables m1, m2, R, M, and appropriate constants.
(a) A simple Atwood's machine consists of two masses connected by a string that passes over...
(a) A simple Atwood's machine consists of two masses connected by a string that passes over a pulley. Derive the formula for the acceleration of the masses for general m1 and m2 and evaluate for the case m1 = 3.50 kg and m2 = 5.50 kg. (b) What assumptions or modifications need to be included if the rotation of the pulley mass M, Radius R is taken into account? If M = 1.00 kg, R = 13.00 cm, determine a...
An Atwood Machine with a massive pulley is set into motion. The geometry of the pulley...
An Atwood Machine with a massive pulley is set into motion. The geometry of the pulley is a solid disk with an axis of rotation through its center. The pulley’s mass is <0.275 + A/100> kg and has a radius of <0.30 + B/10> m. A mass m1 =< 0.325 + C/1000> kg is hung on one side and m2 = 0.425 kg on the other. They are connected by very strong, massless string!(pulley is frictionless) What is the linear...
An Atwood's machine consists of two masses, m1 and m2, connected by a string that passes...
An Atwood's machine consists of two masses, m1 and m2, connected by a string that passes over a pulley. If the pulley has radius and moment of inertia 1/2 MR^2 about its axle. Determine the acceleration if masses m1 and m2. Compare the situation in which moment of inertia is ignored
12. [2pt] An Atwood Machine consists of two masses m1 and m2 attached to each other...
12. [2pt] An Atwood Machine consists of two masses m1 and m2 attached to each other by a single massless string passing over a cylindrical pulley of mass M without slipping. The masses are released from rest, and allowed to accelerate until each has moved a distance h = 1.6 m. Assuming that upwards is positive, rank the velocity of m2 (from most negative to most positive) at this moment for the following cases: Case A: m1 = 11 kg,...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT