Question

A well-insulated 0.2kg copper bowl contains 0.10kg of ice, both at −10◦ C. A very hot...

A well-insulated 0.2kg copper bowl contains 0.10kg of ice, both at −10◦ C. A very hot 0.35kg copper cylinder is dropped into it and the lid quickly closed. The final temperature of the system is 100◦C, with 5g of steam in the container.

(a) How much heat was transferred to the water (in all phases);

(b) How much to the bowl?

(c) What must have been the original temperature of the cylinder?

The specific heat of copper is 386 J/kg·K.

The specific heat of ice is 2100 J/kg·K

The latent heat of fusion of ice is 333 kJ/kg.

The specific heat of liquid water is 4186J/kg·K.

The latent heat of vaporization of water is 2260kJ/kg

Homework Answers

Answer #1


P.S : Please do give a thumbs up since we as an expert take pain and take our time out by typing answer in lucid language and putting best of our knowledge at your doorstep.
Thank you

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 190 g copper bowl contains 110 g of water, both at 20.0°C. A very hot...
A 190 g copper bowl contains 110 g of water, both at 20.0°C. A very hot 430 g copper cylinder is dropped into the water, causing the water to boil, with 2.42 g being converted to steam. The final temperature of the system is 100°C. Neglect energy transfers with the environment. (a) How much energy is transferred to the water as heat? (b) How much to the bowl? (c) What is the original temperature of the cylinder? The specific heat...
A 190 g copper bowl contains 230 g of water, both at 22.0°C. A very hot...
A 190 g copper bowl contains 230 g of water, both at 22.0°C. A very hot 430 g copper cylinder is dropped into the water, causing the water to boil, with 6.44 g being converted to steam. The final temperature of the system is 100°C. Neglect energy transfers with the environment. (a) How much energy is transferred to the water as heat? (b) How much to the bowl? (c) What is the original temperature of the cylinder? The specific heat...
A 180 g copper bowl contains 150 g of water, both at 19.0°C. A very hot...
A 180 g copper bowl contains 150 g of water, both at 19.0°C. A very hot 490 g copper cylinder is dropped into the water, causing the water to boil, with 10.5 g being converted to steam. The final temperature of the system is 100°C. Neglect energy transfers with the environment. (a) How much energy is transferred to the water as heat? (b) How much to the bowl? (c) What is the original temperature of the cylinder? The specific heat...
A 110 g copper bowl contains 100 g of water, both at 22.0°C. A very hot...
A 110 g copper bowl contains 100 g of water, both at 22.0°C. A very hot 360 g copper cylinder is dropped into the water, causing the water to boil, with 7.52 g being converted to steam. The final temperature of the system is 100°C. Neglect energy transfers with the environment. (a) How much energy is transferred to the water as heat? (b) How much to the bowl? (c) What is the original temperature of the cylinder? The specific heat...
What mass of steam at 100°C must be mixed with 216 g of ice at its...
What mass of steam at 100°C must be mixed with 216 g of ice at its melting point, in a thermally insulated container, to produce liquid water at 65.0°C? The specific heat of water is 4186 J/kg·K. The latent heat of fusion is 333 kJ/kg, and the latent heat of vaporization is 2256 kJ/kg.
What mass of steam at 100°C must be mixed with 162 g of ice at its...
What mass of steam at 100°C must be mixed with 162 g of ice at its melting point, in a thermally insulated container, to produce liquid water at 71.0°C? The specific heat of water is 4186 J/kg·K. The latent heat of fusion is 333 kJ/kg, and the latent heat of vaporization is 2256 kJ/kg.
What mass of steam at 100°C must be mixed with 260 g of ice at its...
What mass of steam at 100°C must be mixed with 260 g of ice at its melting point, in a thermally insulated container, to produce liquid water at 73.0°C? The specific heat of water is 4186 J/kg·K. The latent heat of fusion is 333 kJ/kg, and the latent heat of vaporization is 2256 kJ/kg
What mass of steam at 100°C must be mixed with 301 g of ice at its...
What mass of steam at 100°C must be mixed with 301 g of ice at its melting point, in a thermally insulated container, to produce liquid water at 16.0°C? The specific heat of water is 4186 J/kg·K. The latent heat of fusion is 333 kJ/kg, and the latent heat of vaporization is 2256 kJ/kg.
A 160 g copper bowl contains 170 g of water, both at 22.0°C. A very hot...
A 160 g copper bowl contains 170 g of water, both at 22.0°C. A very hot 390 g copper cylinder is dropped into the water, causing the water to boil, with 14.9 g being converted to steam. The final temperature of the system is 100°C. Neglect energy transfers with the environment. (a) How much energy is transferred to the water as heat? (b) How much to the bowl? (c) What is the original temperature of the cylinder? The specific heat...
Chapter 18, Problem 041 (a) Two 58 g ice cubes are dropped into 410 g of...
Chapter 18, Problem 041 (a) Two 58 g ice cubes are dropped into 410 g of water in a thermally insulated container. If the water is initially at 20°C, and the ice comes directly from a freezer at -11°C, what is the final temperature at thermal equilibrium? (b) What is the final temperature if only one ice cube is used? The specific heat of water is 4186 J/kg·K. The specific heat of ice is 2220 J/kg·K. The latent heat of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT