Question

In the figure, an electron accelerated from rest through potential difference V1=1.39 kV enters the gap...

In the figure, an electron accelerated from rest through potential difference V1=1.39 kV enters the gap between two parallel plates having separation d = 22.1 mm and potential difference V2= 98.7 V. The lower plate is at the lower potential. Neglect fringing and assume that the electron's velocity vector is perpendicular to the electric field vector between the plates. In unit-vector notation, what uniform magnetic field allows the electron to travel in a straight line in the gap?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An electron is accelerated from rest by a potential difference of 350 V. It then enters...
An electron is accelerated from rest by a potential difference of 350 V. It then enters a uniform magnetic field of magnitude 200 mT with its velocity perpendicular to the field. Calculate the number of revolutions completed by the electron in 2 seconds.
An electron, initially at rest, is accelerated through a potential difference of 285 V. It then...
An electron, initially at rest, is accelerated through a potential difference of 285 V. It then passes midway between two parallel plates providing a uniform electric field perpendicular to the direction in which it is travelling. The plates are 50 mm long and 25 mm apart and there is a potential difference of 71 V between them. Find (a) The speed of the electron after its initial acceleration and (b) The transverse deflection experienced by the electron as it emerges...
For electron microscope which accelerates electrons from rest through a potential difference of 10 kV. (a)...
For electron microscope which accelerates electrons from rest through a potential difference of 10 kV. (a) If the potential energy of an electron is taken to be 0 initially (at a 0 V plate), what potential energy does it have in Joules after accelerating to the 10 kV plate? (The electrons actually pass through a small hole in this plate before continuing on toward the sample). (b) What speed does the electron reach by the time it reaches the 10...
9. An electron is accelerated from rest by a potential difference of 350 V. It then...
9. An electron is accelerated from rest by a potential difference of 350 V. It then enters a uniform magnetic field of magnitude 200 mT with its velocity perpendicular to the field. Calculate the angular momentum of the electron relative to the center of the circle of rotation while circling perpendicular to the magnetic field. (me = 9.1 x 10-31 kg and e = 1.6 x 10-19 C).
If an electron is accelerated from rest through a potential difference of 7 kV, what is...
If an electron is accelerated from rest through a potential difference of 7 kV, what is its resulting speed? (e = 1.60 × 10-19 C, k = 1/4πε0 = 8.99 × 109 N ∙ m2/C2, mel = 9.11 x 10-31 kg). (Give your answer to the nearest km/s).
An electron microscope accelerates electrons from rest through a potential difference of 10 kV. The charge...
An electron microscope accelerates electrons from rest through a potential difference of 10 kV. The charge on an electron is -1.60×10-19C and the mass of an electron is 9.11×10-31kg. (a) If the potential energy of an electron is taken to be 0 initially (at a 0 V plate), what potential energy does it have in Joules after accelerating to the 10 kV plate? (The electrons actually pass through a small hole in this plate before continuing on toward the sample)....
A proton is accelerated through a potential difference of 10 kV and enters a uniform magnetic...
A proton is accelerated through a potential difference of 10 kV and enters a uniform magnetic field at right angles. Calculate the value of the magnetic flux density necessary to move the proton in a circular path of radius 10 mm. [6] A piece of wire of cross-sectional area A and resistivity ρ is bent into a circular loop of radius r and placed in a magnetic field with its plane at right angles to the field. Determine the magnitude...
A beam of protons is accelerated through a potential difference of 0.750kV and then enters a...
A beam of protons is accelerated through a potential difference of 0.750kV and then enters a uniform magnetic field traveling perpendicular to the field. a.What magnitude of field is needed to bend these protons in a circular arc of diameter 1.74m ? b.What magnetic field would be needed to produce a path with the same diameter if the particles were electrons having the same speed as the protons?
(a) Singly charged uranium-238 ions are accelerated through a potential difference of 2.50 kV and enter...
(a) Singly charged uranium-238 ions are accelerated through a potential difference of 2.50 kV and enter a uniform magnetic field of 1.30 T directed perpendicular to their velocities. Determine the radius of their circular path. (ANSWER) cm (b) Repeat for uranium-235 ions. (ANSWER) cm
An electron is accelerated from rest through a potential difference of 1.0 MV. If the rest...
An electron is accelerated from rest through a potential difference of 1.0 MV. If the rest energy of the electron is 0.511 MeV, how fast is the electron moving?