Question

A mass of 1.6 kilograms is placed at height 0.6 meters above the dotted line above...

A mass of 1.6 kilograms is placed at height 0.6 meters above the dotted line above on a planar surface inclined at an angle of 30 degrees to the horizontal. The coefficient of kinetic friction between the mass and the inclined portion of the surface is 0.21. The mass is released, slides down the incline and compresses a spring with spring constant 818.7 N/m. What is the largest compression in meters experienced by this spring?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A mass of 2.1 kilograms is placed on a horizontal frictionless surface against an uncompressed spring...
A mass of 2.1 kilograms is placed on a horizontal frictionless surface against an uncompressed spring with spring constant 1151.5 N/m. The inclined portion of the surface makes at an angle of 30 degrees to the horizontal and has a coefficient of kinetic friction of 0.27 with the mass. The mass is pushed against the spring until it is compressed a distance 0.15 and then released. How high (vertically), in meters, does the mass rise from the original height before...
A mass of 4 kg is compressed 0.79 meters into a spring with a spring constant...
A mass of 4 kg is compressed 0.79 meters into a spring with a spring constant of 400 N/m and held still on an initially frictionless horizontal surface (see sketch). In front of the spring is a portion of the surface with friction which is 3.2 meters long and the coefficient of kinetic friction is 0.53. The spring is at the the top of a frictionless incline with a length of 26 meters and angle of 23 degrees. At the...
A box sits at the top of an inclined plane with a height of 6 meters....
A box sits at the top of an inclined plane with a height of 6 meters. The plane is tilted at an angle which is just barelysteep enough to make the box to begin sliding from rest. If the coefficient of kinetic friction between the box and the incline is 0.34 and the coefficient of static friction between the box and the incline is 0.6, determine the time in seconds that it will take for the box to reach the...
A wooden block with mass 1.80 kg is placed against a compressed spring at the bottom...
A wooden block with mass 1.80 kg is placed against a compressed spring at the bottom of a slope inclined at an angle of 34.0 ? (point A). When the spring is released, it projects the block up the incline. At point B, a distance of 6.00 m up the incline from A, the block is moving up the incline at a speed of 6.45 m/s and is no longer in contact with the spring. The coefficient of kinetic friction...
Name:__________________________________________Section____ A block of mass ? = 12.0 kg is released from rest on an incline...
Name:__________________________________________Section____ A block of mass ? = 12.0 kg is released from rest on an incline angled at θ = 30 degrees. The block slides down and incline of length ? = 1.40 m along the incline, which has a coefficient of kinetic friction between the incline and the block of ?? = 0.180. The block then slides on a horizontal frictionless surface until it encounters a spring with a spring constant of ? = 205 N/m. Refer to the...
A wooden block with mass 1.30 kg is placed against a compressed spring at the bottom...
A wooden block with mass 1.30 kg is placed against a compressed spring at the bottom of a slope inclined at an angle of 35.0 ∘ (point A). When the spring is released, it projects the block up the incline. At point B, a distance of 7.95 m up the incline from A, the block is moving up the incline at a speed of 5.75 m/s and is no longer in contact with the spring. The coefficient of kinetic friction...
A block of mass 1 kg is initially at rest at a height of 5 m...
A block of mass 1 kg is initially at rest at a height of 5 m from the ground, on an inclined surface of angle of 30° (above horizon). The block slides down and reaches the ground with speed of 7 ???? . What is the coefficient of kinetic friction?
A wooden block with mass 1.65 kg is placed against a compressed spring at the bottom...
A wooden block with mass 1.65 kg is placed against a compressed spring at the bottom of a slope inclined at an angle of 31.0 ? (point A). When the spring is released, it projects the block up the incline. At point B, a distance of 4.10 m up the incline from A, the block is moving up the incline at a speed of 6.85 m/s and is no longer in contact with the spring. The coefficient of kinetic friction...
A mass of 8 kg is placed on an incline with a coefficient of static friction...
A mass of 8 kg is placed on an incline with a coefficient of static friction of 1.67 and coefficient of kinetic friction of 1.29. No additional forces are acting on it and it is raised slowly from a small angle and it begins to slide at some angle. If 10 degrees is added to this angle, and the mass started from rest from a vertical height of 33 meters, how much longer would it take to travel down the...
1) A block is released from point A and it slides down an incline (theta =...
1) A block is released from point A and it slides down an incline (theta = 30 degrees) where the coefficient of kinetic friction is 0.3. It goes 5m and hits a spring with a spring constant k = 500 N/m. While it is being acted upon by the spring, assume it is on a frictionless surface. a) How far is the spring compressed? b) How far does the block go up the plane on the rebound from the spring?...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT