Question

A horizontal block–spring system with the block on a
frictionless surface has total mechanical energy E = 45 J and a
maximum displacement from equilibrium of 0.23 m.

(c) If the maximum speed of the block is 3.06 m/s, what is its
mass?

37.27 kg

61.19 kg

35.49 kg

17.75 kg

(d) What is the speed of the block when its displacement is 0.17 m?

(e) Find the kinetic energy of the block at x = 0.17 m.

(f) Find the potential energy stored in the spring when x = 0.17 m.

(g) Suppose the same system is released from rest at x = 0.23 m on a rough surface so that it loses 15 J by the time it reaches its first turning point (after passing equilibrium at x = 0). What is its position at that instant?

Spring constant: 1701 N/m

Kinetic Energy at the equilibrium point: 45J

Answer #1

A horizontal block-spring system with the block on a
frictionless surface has total mechanical energy E = 54.5
J and a maximum displacement from equilibrium of 0.285 m.
(a) What is the spring constant?
N/m
(b) What is the kinetic energy of the system at the equilibrium
point?
J
(c) If the maximum speed of the block is 3.45 m/s, what is its
mass?
kg
(d) What is the speed of the block when its displacement is 0.160
m?
m/s...

A horizontal block-spring system with the block on a
frictionless surface has total mechanical energy E = 41.4
J and a maximum displacement from equilibrium of 0.284 m.
(a) What is the spring constant?
N/m
(b) What is the kinetic energy of the system at the equilibrium
point?
J
(c) If the maximum speed of the block is 3.45 m/s, what is its
mass?
kg
(d) What is the speed of the block when its displacement is 0.160
m?
m/s ...

A horizontal block-spring system with the block on a
frictionless surface has total mechanical energy E = 39.0 J and a
maximum displacement from equilibrium of 0.260 m.
(a) What is the spring constant? ___N/m
(b) What is the kinetic energy of the system at the equilibrium
point? ___J
(c) If the maximum speed of the block is 3.45 m/s, what is its
mass? ___kg
(d) What is the speed of the block when its displacement is
0.160 m? ___m/s...

A 0.019 kg block on a horizontal frictionless surface is
attached to a string whose spring/force/elastic constant k is 120
N/m. The block is pulled from its equilibrium position at x=0 m to
a displacement x=+0.080 m and is released from rest. The block then
executes simple harmonic motion along x-axis (horizontal). When the
displacement is x=0.051 m, what is the kinetic energy of the block
in J?

he block in the figure lies on a horizontal frictionless
surface, and the spring constant is 50 N/m. Initially, the spring
is at its relaxed length and the block is stationary at position x
= 0. Then an applied force with a constant magnitude of 4.0 N pulls
the block in the positive direction of the x axis, stretching the
spring until the block stops. When that stopping point is reached,
what are (a) the position of the block, (b)...

A 28 kg block on a horizontal surface is attached to a
horizontal spring of spring constant k = 4.8 kN/m. The block is
pulled to the right so that the spring is stretched 7.2 cm beyond
its relaxed length, and the block is then released from rest. The
frictional force between the sliding block and the surface has a
magnitude of 37 N. (a) What is the kinetic energy of the block when
it has moved 1.6 cm from...

1.A 1.10 kg block sliding on a horizontal frictionless surface
is attached to a horizontal spring with k = 490 N/m. Let
x be the displacement of the block from the position at
which the spring is unstretched. At t = 0 the block passes
through x = 0 with a speed of 3.40 m/s in the positive
x direction. What are the (a) frequency
and (b) amplitude of the block's motion
2.A vertical spring stretches 13 cm when a...

A 2.00 kg block sliding on a horizontal surface makes contact
with a spring, compressing
the spring (the other end of the spring is attached to a rigid
wall). At the instant of
contact, the block has a speed of 12.0 m/s. The coefficients
of static and kinetic friction
between the block and the surface are 0.55 and 0.35,
respectively. The spring constant of
the spring is 100.0 N/m.
a) Determine the maximum compression of the spring
b) Determine the...

A 0.225 kg block attached to a light spring oscillates on a
frictionless, horizontal table. The oscillation amplitude is
A = 0.190 m
and the block moves at 3.50 m/s as it passes through equilibrium
at
x = 0.
(a) Find the spring constant, k (in N/m).
N/m
(b) Calculate the total energy (in J) of the block-spring
system.
J
(c) Find the block's speed (in m/s) when x = A/2
m/s.

A block with mass 2 kg is attached to an ideal massless spring
and undergoes simple harmonic oscillations with a period of 0.50 s.
The surface is frictionless. The amplitude of the oscillation is
0.1 m. (a) What is the spring constant of the spring? (b) What is
the total mechanical energy of the system (the spring and block
system)? (c) What is the maximum speed of the block? (d) What is
the speed of the block when the displacement...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 12 minutes ago

asked 16 minutes ago

asked 29 minutes ago

asked 37 minutes ago

asked 40 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 3 hours ago