Question

Light of wavelength 14.2*10^-12 m undergoes Compton scattering. For what angle will the observed wavelength be...

Light of wavelength 14.2*10^-12 m undergoes Compton scattering. For what angle will the observed wavelength be 18.1*10^-12m? Answer in degrees.

Homework Answers

Answer #1

For Compton scattering

....1

Here

,

(Compton Wavelength )

Put these values in equation 1

127.22°

=127.22°. Answer

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An photon with a wavelength in the X-ray region of 0.69 nm undergoes Compton scattering by...
An photon with a wavelength in the X-ray region of 0.69 nm undergoes Compton scattering by colliding with a free electron. 5)Next assume the photon deflects off at a larger angle of 106. What is the wavelength of the outgoing photon after the collision in this situation? λ' = 6)What the energy of the outgoing photon? Eγ = 7)Finally, lets say the photon hits the electron straight on so that it deflects straight back. What is the wavelength of the...
Some x-ray photons with a wavelength of 0.124-nm in a Compton-scattering experiment. (a) At what angle...
Some x-ray photons with a wavelength of 0.124-nm in a Compton-scattering experiment. (a) At what angle is the wavelength of the scattered rays 1.0% longer than that of the incident x rays? (b) At what angle is it 0.050% longer?
An X-Ray photon with an energy of E = 128 keV undergoes Compton Scattering at an...
An X-Ray photon with an energy of E = 128 keV undergoes Compton Scattering at an angle of θ = 33°. What is the wavelength (λ0) of the incident photon (in nm)? Use h = 4.136 x 10-15 eVs and c = 3 x 108 m/s. What is the wavelength (λ') of the scattered photon (in nm)? What is the energy (E’) if the scattered photon (in keV)? Use h = 4.136 x 10-15 eVs and c = 3 x...
In a Compton scattering experiment, an x-ray photon scatters through an angle of 18.2° from a...
In a Compton scattering experiment, an x-ray photon scatters through an angle of 18.2° from a free electron that is initially at rest. The electron recoils with a speed of 1,800 km/s. (a) Calculate the wavelength of the incident photon. (nm) (b) Calculate the angle through which the electron scatters. (degrees)
In a Compton scattering experiment, the incident X-rays have a wavelength of 0.2680 nm, and the...
In a Compton scattering experiment, the incident X-rays have a wavelength of 0.2680 nm, and the scattered X-rays have a wavelength of 0.2710 nm. Through what angle in the drawing are the X-rays scattered?
In a Compton scattering experiment, the incident X-rays have a wavelength of 0.2683 nm, and the...
In a Compton scattering experiment, the incident X-rays have a wavelength of 0.2683 nm, and the scattered X-rays have a wavelength of 0.2704 nm. Through what angle in the drawing are the X-rays scattered?
A photon undergoes Compton scattering on a stationary electron. Before scattering, the photon's frequency is ν0,...
A photon undergoes Compton scattering on a stationary electron. Before scattering, the photon's frequency is ν0, whereas after scattering said frequency is ν. After scattering, the photon's direction of movement is opposite to its original direction (scattering of 180 degrees), and the electron moves at a relativistic speed defined as 'v'. a) the photon's wavelength before scattering was λ0=1 Angstrom. Calculate frequencies ν0 and v. b) In this paragraph, ignore the numerical data given in paragraph a) and answer using...
n a Compton scattering experiment, the incident X-rays have a wavelength of 0.2682 nm, and the...
n a Compton scattering experiment, the incident X-rays have a wavelength of 0.2682 nm, and the scattered X-rays have a wavelength of 0.2701 nm. Through what angle in the drawing are the X-rays scattered?
Light of wavelength 590 nm is shone through a double slit. The angle that locates the...
Light of wavelength 590 nm is shone through a double slit. The angle that locates the third dark fringe is 14.2 degrees. Calculate the angle that locates the first dark fringe.
A photon of wavelength 5.58 pm scatters at an angle of 122° from an initially stationary,...
A photon of wavelength 5.58 pm scatters at an angle of 122° from an initially stationary, unbound electron. What is the de Broglie wavelength(in pm) of the electron after the photon has been scattered?? Notice: Answer is not (9.29, 2.12, 2.06, nor 4.11)pm Explanation: The de Broglie wavelength of a massive particle is related to its momentum in the same way that a photon's momentum is related to its wavelength. The well-known Compton scattering relationship gives the final wavelength of...