Question

A 170 g copper bowl contains 245 g of water, both at 20.0°C. A very hot...

A 170 g copper bowl contains 245 g of water, both at 20.0°C. A very hot 300 g copper cylinder is dropped into the water, causing the water to boil, with 5.45 g being converted to steam. The final temperature of the system is 100°C. Neglect energy transfers with the environment.

(c) What is the original temperature of the cylinder? (in celcius)

Homework Answers

Answer #1

mb = mass of bowl = 170 g

mc = mass of copper cylinder = 300 g

m1 = mass of water converted to steam = 5.45 g

m2 = mass of water at temperature 100 = 239.55

T = original temperatrure of cylinder

cc = specific heat of copper = 0.385

cw = specific heat of water = 4.2

L = 2260 J/g

using conservation of energy

mc cc (T - 100) = mb cc (100 - 20) + m2 cw (100 - 20) + m1 cw (100 - 20) + m1 L

(300) (0.385) (T - 100) = (170) (0.385) (80) + (239.55) (4.2) (80) + (5.45) (4.2) (80) + (5.45) (2260)

T = 964.7

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 190 g copper bowl contains 110 g of water, both at 20.0°C. A very hot...
A 190 g copper bowl contains 110 g of water, both at 20.0°C. A very hot 430 g copper cylinder is dropped into the water, causing the water to boil, with 2.42 g being converted to steam. The final temperature of the system is 100°C. Neglect energy transfers with the environment. (a) How much energy is transferred to the water as heat? (b) How much to the bowl? (c) What is the original temperature of the cylinder? The specific heat...
A 190 g copper bowl contains 230 g of water, both at 22.0°C. A very hot...
A 190 g copper bowl contains 230 g of water, both at 22.0°C. A very hot 430 g copper cylinder is dropped into the water, causing the water to boil, with 6.44 g being converted to steam. The final temperature of the system is 100°C. Neglect energy transfers with the environment. (a) How much energy is transferred to the water as heat? (b) How much to the bowl? (c) What is the original temperature of the cylinder? The specific heat...
A 180 g copper bowl contains 150 g of water, both at 19.0°C. A very hot...
A 180 g copper bowl contains 150 g of water, both at 19.0°C. A very hot 490 g copper cylinder is dropped into the water, causing the water to boil, with 10.5 g being converted to steam. The final temperature of the system is 100°C. Neglect energy transfers with the environment. (a) How much energy is transferred to the water as heat? (b) How much to the bowl? (c) What is the original temperature of the cylinder? The specific heat...
A 110 g copper bowl contains 100 g of water, both at 22.0°C. A very hot...
A 110 g copper bowl contains 100 g of water, both at 22.0°C. A very hot 360 g copper cylinder is dropped into the water, causing the water to boil, with 7.52 g being converted to steam. The final temperature of the system is 100°C. Neglect energy transfers with the environment. (a) How much energy is transferred to the water as heat? (b) How much to the bowl? (c) What is the original temperature of the cylinder? The specific heat...
A 100 g copper bowl contains 500 g of water, both at 20◦C. A very hot...
A 100 g copper bowl contains 500 g of water, both at 20◦C. A very hot 300 g copper cylinder is dropped into the water, causing the water to boil, with 5 g of the water being converted to steam, and the final temperature of the system is 100◦C. What is the original temperature of the cylinder?
A 160 g copper bowl contains 170 g of water, both at 22.0°C. A very hot...
A 160 g copper bowl contains 170 g of water, both at 22.0°C. A very hot 390 g copper cylinder is dropped into the water, causing the water to boil, with 14.9 g being converted to steam. The final temperature of the system is 100°C. Neglect energy transfers with the environment. (a) How much energy is transferred to the water as heat? (b) How much to the bowl? (c) What is the original temperature of the cylinder? The specific heat...
A well-insulated 0.2kg copper bowl contains 0.10kg of ice, both at −10◦ C. A very hot...
A well-insulated 0.2kg copper bowl contains 0.10kg of ice, both at −10◦ C. A very hot 0.35kg copper cylinder is dropped into it and the lid quickly closed. The final temperature of the system is 100◦C, with 5g of steam in the container. (a) How much heat was transferred to the water (in all phases); (b) How much to the bowl? (c) What must have been the original temperature of the cylinder? The specific heat of copper is 386 J/kg·K....
A 50.0 g copper calorimeter contains 210 g of water at 20.0°C. How much steam must be condensed...
A 50.0 g copper calorimeter contains 210 g of water at 20.0°C. How much steam must be condensed into the water if the final temperature of the system is to reach 40.0°C?  g
A 50.0-g copper calorimeter contains 210 g of water at 20.0°C. How much steam at 100°C...
A 50.0-g copper calorimeter contains 210 g of water at 20.0°C. How much steam at 100°C must be condensed into the water if the final temperature of the system is to reach 60.0°C? A step-by-step process (ex. Q1+Q2+...+ Qn = 0) would be appreciated. I am not concerned with the answer; I would just like a clear setup of the problem.
A copper pot with a mass of 0.480 kg contains 0.170 kg of water, and both...
A copper pot with a mass of 0.480 kg contains 0.170 kg of water, and both are at a temperature of 20.0 ?C . A 0.270 kg block of iron at 83.0 ?C is dropped into the pot. Find the final temperature of the system, assuming no heat loss to the surroundings.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT