Question

A 115 g granite cube slides down a 45 ∘ frictionless ramp. At the bottom, just...

A 115 g granite cube slides down a 45 ∘ frictionless ramp. At the bottom, just as it exits onto a horizontal table, it collides with a 285 g steel cube at rest. Assume an elastic collision. How high above the table should the granite cube be released to give the steel cube a speed of 200 cm/s ?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 50.0 kg crate, initially at rest, slides down a frictionless ramp of 3.5 m long...
A 50.0 kg crate, initially at rest, slides down a frictionless ramp of 3.5 m long and 0.865 m high. What is the speed of the crate at the bottom of the ramp? A) 2.91 m/s B) 17.0 m/s C) 8.28 m/s D) 8.48 m/s E) 4.12 m/s
A block of mass M sits at rest at the top of a frictionless curved ramp...
A block of mass M sits at rest at the top of a frictionless curved ramp of height h. After being released, the block is moving with speed 4v when it collides with a block of mass 1.5M at the bottom of the ramp. Immediately following the collision, the larger block has a speed 2v. The second block is attached to a vertical rope, and swings freely as a pendulum after the collision. The pendulum string has length L. a)...
A mass 1.9 kg is initially at rest at the top of a 2meter high ramp....
A mass 1.9 kg is initially at rest at the top of a 2meter high ramp. It slides down the frictionless ramp and collides elastically with an unknown mass which is initially at rest. After colliding with the unknown mass, the 1.9 kg mass recoils and achieves a maximum height (altitude) of only 0.2 m going back up the frictionless ramp. (HINT: Solving each part in sequence will guide you to a solution without doing a lot of algebra.) 1.Considering...
block 1 of mass m1 slides from rest along a frictionless ramp from an unknown height...
block 1 of mass m1 slides from rest along a frictionless ramp from an unknown height h and then collides with stationary block 2, which has mass m2 = 3m1 . The collision is an elastic one. After the collision, block 2 slides into a friction-filled region where the coefficient of kinetic friction is 0.5 and comes to a stop through a distance d = 10 m in that region. What is the height h?
Beginning from rest, an object of mass 200 kg slides down a 9-m-long ramp. The ramp...
Beginning from rest, an object of mass 200 kg slides down a 9-m-long ramp. The ramp is inclined at an angle of 20o from the horizontal. Air resistance and friction between the object and the ramp are negligible. Let g = 9.81 m/s2. Determine the kinetic energy of the object, in kJ, and the velocity of the object, in m/s, at the bottom of the ramp.
A block (4 kg) starts from rest and slides down a frictionless ramp #1 of height...
A block (4 kg) starts from rest and slides down a frictionless ramp #1 of height 9 m. The block then slides a horizontal distance of 1 m on a rough surface with kinetic coefficient of friction μk = 0.5. Next, it slides back up another frictionless ramp #2. Find the following numerical energy values: Initial gravitational potential energy on Ramp #1: U1G =  J Tries 0/3 Kinetic energy at bottom of Ramp #1 before traveling across the rough surface: K...
In the figure, a 4.5 kg box of running shoes slides on a horizontal frictionless table...
In the figure, a 4.5 kg box of running shoes slides on a horizontal frictionless table and collides with a 2.8 kg box of ballet slippers initially at rest on the edge of the table, at height h = 0.60 m. The speed of the 4.5 kg box is 4.8 m/s just before the collision. If the two boxes stick together because of packing tape on their sides, what is their kinetic energy just before they strike the floor?
You have a mass at the top of a frictionless 85 cm ramp that has been...
You have a mass at the top of a frictionless 85 cm ramp that has been raised to an angle of 30° above the horizontal. Do the following and be sure to show your work: a. Find the speed of the mass when it reaches the bottom of the ramp if it starts from rest. (Hint: this can be done with either the kinematics equations or conservation of energy.) b. Once the mass reaches the bottom of the ramp, it...
A 500-g block is released from rest and slides down a frictionless track that begins 2.26...
A 500-g block is released from rest and slides down a frictionless track that begins 2.26 m above the horizontal, as shown in the figure below. At the bottom of the track, where the surface is horizontal, the block strikes and sticks to a light spring with a spring constant of 29.5 N/m. Find the maximum distance the spring is compressed. m A 500-g block rests at the top of a track on a horizontal platform. From this platform, the...
A small block has constant acceleration as it slides down a frictionless incline. The block is...
A small block has constant acceleration as it slides down a frictionless incline. The block is released from rest at the top of the incline, and its speed after it has traveled 7.00 mm to the bottom of the incline is 3.80 m/s . What is the speed of the block when it is 3.00 mm from the top of the incline?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT