Question

A 240 g air-track glider is attached to a spring. The glider is pushed in 11.2...

A 240 g air-track glider is attached to a spring. The glider is pushed in 11.2 cm against the spring, then released. A student with a stopwatch finds that 14 oscillations take 14.0 s. What is the spring constant?

Homework Answers

Answer #1

the time requared for one oscillation,t =14/14

                                                       t = 1 s

    But t = 2π√m/k

         1/2π = √m/k

==> k = m/(1/2π)^2

       ∴  k =0.240/0.025 N/m

=9.6N/m

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 800 g air-track glider attached to a spring with spring constant 14.0 N/m is sitting...
A 800 g air-track glider attached to a spring with spring constant 14.0 N/m is sitting at rest on a frictionless air track. A 400 g glider is pushed toward it from the far end of the track at a speed of 124 cm/s . It collides with and sticks to the 800 g glider. Part A What is the amplitude of the subsequent oscillations? Part B What is their period?
An air-track glider attached to a spring oscillates between the 15.0 cm mark and the 57.0...
An air-track glider attached to a spring oscillates between the 15.0 cm mark and the 57.0 cm mark on the track. The glider completes 15.0 oscillations in 34.0 s . What are the (a) period, (b) frequency, (c) amplitude, and (d) maximum speed of the glider?
A mass-spring system composed of a 250g air-track glider attatched to a spring is being timed...
A mass-spring system composed of a 250g air-track glider attatched to a spring is being timed by a student as it oscillates with SHM. The student finds that 10 oscillations take 6.50s. What is the spring constant K? The 250g glider is now removed and another glider of mass m is attached to the spring. The new glider is pulled, released and the system oscillates according to x(t)=0.04cos(8.4t). a)What is the period of the new glider? b)By comparing the new...
An air-track glider(m=500grams) is attached to a spring with a force constant of 79N/m. The glider...
An air-track glider(m=500grams) is attached to a spring with a force constant of 79N/m. The glider is pushed 10cm to the left of zero and released from rest (@ t=0, v=0 and x=-10cm). A)What is the postion equation as a function of time for the glider?(can you show each step, specifically for finding the phase constant) B)What is the maximum speed of glider?
An air track glider attached to a spring oscillates with a period 1.50 s. At t=0...
An air track glider attached to a spring oscillates with a period 1.50 s. At t=0 s the glider is 4.60 cm left of the equilibrium position and moving to the right at 33.4 cm/s. a) What is the phase constant?
An air-track glider attached to a spring oscillates with a period of 1.50 s . At...
An air-track glider attached to a spring oscillates with a period of 1.50 s . At t=0s the glider is 5.50 cm left of the equilibrium position and moving to the right at 39.9 cm/s . Part A:What is the phase constant? Part B: B. What are the phases at t = .5, 1.0, and 1.5 s? Answer in rad.
An air-track glider attached to a spring oscillates with a period of 1.5 s. At t...
An air-track glider attached to a spring oscillates with a period of 1.5 s. At t = 0 s the glider is 5.00 cm left of the equilibrium postion and moving to the right at 36.3 cm/s. a) What is the phase constant? b) What is the phase at t = 0 s, 0.5 s, 1.0 s, and 1.5 s?
An air-track glider attached to a spring oscillates with a period of 1.50 s . At...
An air-track glider attached to a spring oscillates with a period of 1.50 s . At t=0s the glider is 4.90 cm left of the equilibrium position and moving to the right at 35.6 cm/s . What is the phase at t=0.5s?
An air-track glider attached to a spring oscillates with a period of 1.50 s . At...
An air-track glider attached to a spring oscillates with a period of 1.50 s . At t=0s the glider is 4.50 cmcm left of the equilibrium position and moving to the right at 32.6 cm/s . Part A. What is the phase constant? Express your answer to three significant figures and include the appropriate units.
An air-track glider of mass 0.100 kg is attached to the end of a horizontal air...
An air-track glider of mass 0.100 kg is attached to the end of a horizontal air track by a spring with force constant 20.0 N/m. Initially the spring is unstreched and the glider is moving at 1.50 m/s to the right. With the air track turned off, the coefficient of kinetic friction is ?k=0.47. It can be shown that with the air track turned off, the glider travels 8.6 cm before it stops instantaneously. Part A) How large would the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT