Question

The collision between a hammer and a nail can be considered to be approximately elastic. Part...

The collision between a hammer and a nail can be considered to be approximately elastic.

Part A

Calculate the kinetic energy acquired by a 12-g nail when it is struck by a 600-g hammer moving with an initial speed of 5.0 m/s .

Express your answer using two significant figures.

K =   J  

Homework Answers

Answer #1

In an elastic collision, the final speed of the initially stationary object is given by:

v = 2mV/(m+M)

m is initially stationary mass =12g
M is initially moving mass =600
V is intial velocity of moving mass (can be "+" or "-") = 5 m/s

This equation comes from solving 2 equations: a conservation of kinetic energy equation, and a conservation of linear momentum equation.

Substitute values to find v and hence the KE

v = 2mV/(m+M)

v= 2*12*500cm /612

v= 19.60 cm/s

v= 0.196 m/s

K.E = 0.5* 0.012*0.196*0.196

K.E = 0.000230

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The collision between a hammer and a nail can be considered to be approximately elastic. A.)Calculate...
The collision between a hammer and a nail can be considered to be approximately elastic. A.)Calculate the kinetic energy acquired by a 9.7-g nail when it is struck by a 700-g hammer moving with an initial speed of 9.2 m/s.
A 2.0 g particle moving at 7.2 m/s makes a perfectly elastic head-on collision with a...
A 2.0 g particle moving at 7.2 m/s makes a perfectly elastic head-on collision with a resting 1.0 g object. (a) Find the speed of each after the collision. 2.0 g particle m/s 1.0 g particle m/s (b) Find the speed of each particle after the collision if the stationary particle has a mass of 10 g. 2.0 g particle m/s 1.0 g particle m/s (c) Find the final kinetic energy of the incident 2.0 g particle in the situations...
A 2.0-g particle moving at 7.0 m/s makes a perfectly elastic head-on collision with a resting...
A 2.0-g particle moving at 7.0 m/s makes a perfectly elastic head-on collision with a resting 1.0-g object. (a) Find the speed of each particle after the collision. 2.0 g particle     m/s 1.0 g particle     m/s (b) Find the speed of each particle after the collision if the stationary particle has a mass of 10 g. 2.0 g particle     m/s 10.0 g particle     m/s (c) Find the final kinetic energy of the incident 2.0-g particle in the situations described in...
A 2.0-g particle moving at 7.2 m/s makes a perfectly elastic head-on collision with a resting...
A 2.0-g particle moving at 7.2 m/s makes a perfectly elastic head-on collision with a resting 1.0-g object. (a) Find the speed of each particle after the collision. 2.0 g particle     m/s 1.0 g particle     m/s (b) Find the speed of each particle after the collision if the stationary particle has a mass of 10 g. 2.0 g particle     m/s 10.0 g particle     m/s (c) Find the final kinetic energy of the incident 2.0-g particle in the situations described in...
A nail driven into a board increases in temperature.If 64.0 % of the kinetic energy delivered...
A nail driven into a board increases in temperature.If 64.0 % of the kinetic energy delivered by a 1.80 kg hammer with a speed of 8.00 m/s is transformed into heat that flows into the nail and does not flow out, what is the increase in temperature of an 7.65 g aluminum nail after it is struck 10 times? (Celsius)
A 2.0 g particle moving at 5.6 m/s makes a perfectly elastic head-on collision with a...
A 2.0 g particle moving at 5.6 m/s makes a perfectly elastic head-on collision with a resting 1.0 g object. (a) Find the speed of each after the collision. 2.0 g particle m/s 1.0 g particle m/s (b) Find the speed of each particle after the collision if the stationary particle has a mass of 10 g. 2.0 g particle m/s 1.0 g particle m/s (c) Find the final kinetic energy of the incident 2.0 g particle in the situations...
At 20 ∘C (approximately room temperature) the average velocity of N2 molecules in air is 1050...
At 20 ∘C (approximately room temperature) the average velocity of N2 molecules in air is 1050 mph. Part A What is the kinetic energy (in J) of an N2 molecule moving at this speed? Express your answer using four significant figures. Part B What is the total kinetic energy of 1 mol of N2 molecules moving at this speed? Express your answer using four significant figures.
Two balls undergo a perfectly elastic head-on collision, with one ball initially at rest. If the...
Two balls undergo a perfectly elastic head-on collision, with one ball initially at rest. If the incoming ball has a speed of 200 m/s . E) What is the final speed of the incoming ball if the stationary ball is much more massive than the incoming ball? Express your answer using two significant figures. F) What is the final direction of the incoming ball with respect to the initial direction if the stationary ball is much more massive than the...
In a perfectly elastic collision, a 400-g ball moving toward the east at 3.7 m/s suddenly...
In a perfectly elastic collision, a 400-g ball moving toward the east at 3.7 m/s suddenly collides head-on with a 200 g ball sitting at rest. (a) Determine the velocity of the first ball just after the collision. (b) Determine the velocity of the second ball just after the collision. (c) Is kinetic energy conserved in this collision? How do you know? please show work on paper
A 120 gg ball moving to the right at 4.2 m/sm/s catches up and collides with...
A 120 gg ball moving to the right at 4.2 m/sm/s catches up and collides with a 450 gg ball that is moving to the right at 1.2 m/sm/s Part A: If the collision is perfectly elastic, what is the speed of the 120 gg ball after the collision? Express your answer to two significant figures and include the appropriate units. Part B : If the collision is perfectly elastic, what is the direction of motion of the 120 gg...