Question

A 8.7 L (8.7x10-3 m3) vessel contains 4.3 moles of ideal gas at a pressure of...

A 8.7 L (8.7x10-3 m3) vessel contains 4.3 moles of ideal gas at a pressure of 2.1X106 Pa.

Find

(a) the temperature of the gas. (R = 8.314 J/mol·K)

(b) the average kinetic energy of a gas molecule in the vessel

(c) the rms speed if the gas is O2 (M = 32.0x10-3 kg/mol)

Homework Answers

Answer #1

Part A.

Using ideal gas law:

PV = nRT

T = P*V/(n*R)

P = Pressure = 2.1*10^6 Pa

V = 8.7 L = 8.7*10^-3 m^3

n = number of moles = 4.3 moles

So,

T = 2.1*10^6*8.7*10^-3/(4.3*8.314)

T = 511.0 K = temperature of gas

2.

Average kinetic energy of molecules is given by:

KE_avg = (3/2)*k*T

k = Boltzmann's constant = 1.38*10^-23

T = temperature of gas = 511.0 K

So,

KE_avg = 3*1.38*10^-23*511.0/2

KE_avg = 1.06*10^-20 J

3.

rms speed of gas molecules is given by:

V_rms = sqrt (3*R*T/Mw)

Mw = molecular weight of oxygen = 32.0*10^-3 kg/mol

So,

V_rms = sqrt (3*8.314*511.0/(32.0*10^-3))

V_rms = 631.1 m/s = rms speed

Let me know if you've any query.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A vessel with a movable piston contains 1.90 mol of an ideal gas with initial pressure...
A vessel with a movable piston contains 1.90 mol of an ideal gas with initial pressure Pi = 2.03 ✕ 105 Pa, initial volume Vi = 1.00 ✕ 10−2 m3, and initial temperature Ti = 128 K. (a) What is the work done on the gas during a constant-pressure compression, after which the final volume of the gas is 2.50 L? J (b) What is the work done on the gas during an isothermal compression, after which the final pressure...
A cylinder contains 1.5 moles of ideal gas, initially at a temperature of 113 ∘C. The...
A cylinder contains 1.5 moles of ideal gas, initially at a temperature of 113 ∘C. The cylinder is provided with a frictionless piston, which maintains a constant pressure of 6.4×105Pa on the gas. The gas is cooled until its temperature has decreased to 27∘C. For the gas CV = 11.65 J/mol⋅K, and the ideal gas constant R = 8.314 J/mol⋅K. 1.Find the work done by the gas during this process. 2.What is the change in the internal (thermal) energy of...
An ideal monatomic gas is contained in a vessel of constant volume 0.400 m3. The initial...
An ideal monatomic gas is contained in a vessel of constant volume 0.400 m3. The initial temperature and pressure of the gas are 300 K and 5.00 atm, respectively. The goal of this problem is to find the temperature and pressure of the gas after 18.0 kJ of thermal energy is supplied to the gas. (a) Use the ideal gas law and initial conditions to calculate the number of moles of gas in the vessel. 80.99 Correct: Your answer is...
An ideal monatomic gas is contained in a vessel of constant volume 0.330 m3. The initial...
An ideal monatomic gas is contained in a vessel of constant volume 0.330 m3. The initial temperature and pressure of the gas are 300 K and 5.00 atm, respectively. The goal of this problem is to find the temperature and pressure of the gas after 24.0 kJ of thermal energy is supplied to the gas. (a) Use the ideal gas law and initial conditions to calculate the number of moles of gas in the vessel. Your response differs from the...
12a. Two moles of an ideal gas are placed in a container whose volume is 3.7...
12a. Two moles of an ideal gas are placed in a container whose volume is 3.7 x 10-3 m3. The absolute pressure of the gas is 7.2 x 105 Pa. What is the average translational kinetic energy of a molecule of the gas? Number Entry field with incorrect answer now contains modified data Units Entry field with correct answer b. Two ideal gases have the same mass density and the same absolute pressure. One of the gases is helium (He),...
The volume of an ideal gas is adiabatically reduced from 200 L to 74.3 L. The...
The volume of an ideal gas is adiabatically reduced from 200 L to 74.3 L. The initial pressure and temperature are 1.00 atm and 300 K. The final pressure is 4.00 atm. ? = 8.314 J/mol.K , ????????? = 1.4, ??????????? = 1.67 and 1 atm = 1.013 × 10^5 Pa. mol.K (a) Is the gas monatomic or diatomic? (b) What is the final temperature? (c) How many moles are in the gas?
Rectangular PV Cycle A piston contains 260 moles of an ideal monatomic gas that initally has...
Rectangular PV Cycle A piston contains 260 moles of an ideal monatomic gas that initally has a pressure of 2.61 × 105 Pa and a volume of 4.9 m3. The piston is connected to a hot and cold reservoir and the gas goes through the following quasi-static cycle accepting energy from the hot reservoir and exhausting energy into the cold reservoir. 1. The pressure of the gas is increased to 5.61 × 105 Pa while maintaining a constant volume. 2....
1. a) Suppose 2 moles of a monatomic ideal gas occupies 5 m3 at a pressure...
1. a) Suppose 2 moles of a monatomic ideal gas occupies 5 m3 at a pressure of 1600 Pa. First: Find the temperature of the gas in Kelvin. Answer: 481 K Second: Find the total internal energy of the gas. Answer:12000 J 1. b) Suppose the gas undergoes an isobaric expansion to a volume of 7 m3. (Don’t forget to include + and – in each of the problems below) First: Find Q Answer: 8000 J Second: Find W Answer:...
3.      Two moles of an ideal gas at an initial temperature of 400 K are confined to...
3.      Two moles of an ideal gas at an initial temperature of 400 K are confined to a volume of 40.0 L.  The gas then undergoes a free expansion to twice its initial volume.  The container in which this takes place is insulated so no heat flows in or out.  (1 Liter = 10-3 m3)  R  =  8.314 J/(mole K) a)      What is the entropy change of the gas?  (15 points) b)      What is the entropy change of the universe?  (10 points)
1. The average kinetic energy of the molecules in a gas sample depends only on the...
1. The average kinetic energy of the molecules in a gas sample depends only on the temperature, T. But given the same kinetic energies, a lighter molecule will move faster than a heavier molecule. A. What is the rms speed of Cl2 molecules at 505 K? B. What is the rms speed of He atoms at 505 K? 2. Use the van der Waals equation of state to calculate the pressure of 3.70 mol of H2O at 473 K in...