Question

In the lab frame two masses, m1=10 kg and m2=6 kg collide elastically in one dimension...

In the lab frame two masses, m1=10 kg and m2=6 kg collide elastically in one dimension with initial velocities v1=17 m/s and v2=3 m/s.

Calculate the kinetic energy of mass mn after the collision, where n=2.

Enter responses using three significant digits.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose we are looking at a collision of two masses in 1D. The masses are m1...
Suppose we are looking at a collision of two masses in 1D. The masses are m1 and m2, their initial velocities are V10 and V20 and their final velocities are v1 and v2. Momentum is conserved in this collision which means that it should be possible to express v2 in terms of v1 and other constants. a) determine the final speeds of m1 and m2 in terms of v1 and other constants b) determine the initial and final kinetic energies...
Two objects collide in a totally inelastic collision. Just before the collision, the objects have the...
Two objects collide in a totally inelastic collision. Just before the collision, the objects have the following masses and velocities: M1 = 4.5 kg, v1 = 1.5 m/s @ 140o. M2 = 1.5 kg, v2 = 1 m/s @ 180o. a) Find the velocity of the object after the collision. b) How much kinetic energy was lost in the collision.
Suppose that we have two masses, m1 and m2, traveling at initial velocities v1i and v2i...
Suppose that we have two masses, m1 and m2, traveling at initial velocities v1i and v2i . After they collide, they will have velocities v1f and v2f . The collision will happen along a straight line, and there are no external forces involved. Answer all exercises. Exercise 2 For the collision above what is are the initial and final kinetic energies? Is kinetic energy conserved in the collision? Exercise 3 Let m1 = 500 g, m2 = 500 g, v1i...
Two masses collide in an elastic collision, with the following initial values: m1 = 2 kg...
Two masses collide in an elastic collision, with the following initial values: m1 = 2 kg m2 = 3 kg v01 = 5 m/s v02 = -4 m/s Use the conservation rules, and algebra, what is the final velocity of mass 1, vf1 in m/s?
Consider an elastic collision in one dimension that involves objects of mass m1=2 kg and m2=11.3...
Consider an elastic collision in one dimension that involves objects of mass m1=2 kg and m2=11.3 kg. The larger mass is initially at rest, and the smaller one has an initial velocity of 16 m/s. Find the final velocities of the two objects after the collision. v1f v2f
Two gliders with different masses (m1 and m2) are placed on a frictionless air track and...
Two gliders with different masses (m1 and m2) are placed on a frictionless air track and given initial velocities v1i and v2i. They elastically collide, bouncing off each other. (a) Determine the equations for the final velocity of each glider. (b) For m1 = 0.51 kg, m2 = 0.98 kg, v1i=1.5 im/s, and v2i=-2.2 im/s, find v1f and v2f.
Two-car, 2-D collision. Two cars with masses m1 = 1200 kg and m2 = 1500 kg...
Two-car, 2-D collision. Two cars with masses m1 = 1200 kg and m2 = 1500 kg are approaching an intersection. Car 1 has a velocity v1 = 15.0 m/s towards the east and car 2 has a velocity v2 = 20.0 m/s towards the north. The two cars reach the intersection at the same time and collide and lock bumpers and after the collision travel as a single wreckage. (a) What is the magnitude and direction of their velocity after...
Consider an inelastic collision between two spheres of different masses, m1= 1kg and m2=3 kg, in...
Consider an inelastic collision between two spheres of different masses, m1= 1kg and m2=3 kg, in the +x direction. Ball M1 is moving at speed, v1=3.0ms, and ball 2 is moving towards ball 1 at speed, v2=1 kg. 1. What will happen to the velocities of the two balls after a completely inelastic collision? Explain your reasoning. Do NOT do any calculation yet. Use your physical intuition and what know so far about collisions. 2. Which physical principles were used...
A block of mass m1 = 1.90 kg initially moving to the right with a speed...
A block of mass m1 = 1.90 kg initially moving to the right with a speed of 4.6 m/s on a frictionless, horizontal track collides with a spring attached to a second block of mass m2 = 4.8 kg initially moving to the left with a speed of 1.1 m/s.The spring constant is 519 N/m. What if m1 is initially moving at 3.4 m/s while m2 is initially at rest? (a) Find the maximum spring compression in this case. x...
A bumper car with mass m1 = 114 kg is moving to the right with a...
A bumper car with mass m1 = 114 kg is moving to the right with a velocity of v1 = 4.7 m/s. A second bumper car with mass m2 = 94 kg is moving to the left with a velocity of v2 = -3.7 m/s. The two cars have an elastic collision. Assume the surface is frictionless. 1)What is the velocity of the center of mass of the system? 2)What is the initial velocity of car 1 in the center-of-mass...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT