Question

A bubble of 6.00 mol helium is submerged at a certain depth in liquid water when...

A bubble of 6.00 mol helium is submerged at a certain depth in liquid water when the water ( and thus the helium ) undergoes a temperature increase T of 20 C at constant pressure. As a result, the bubble expands. (a) How much heat Q is added to the helium during the expansion and temperature increase? (b) What is the change Eint in the internal energy of the helium during the temperature increase? (c) How much work W is done by the helium as it expands against the pressure of the surrounding water during the temperature increase?

Homework Answers

Answer #1

(a) How much heat Q is added to the helium during the expansion and temperature increase?

using a formula, we have

Q = n CpT

For any ideal gas,   Cp = Cv + R

Q = n (Cv + R) T

where, Cv = (3/2) R

THEN, we get

Q = n [(1.5) R + R] T

Q = (6 mol) (2.5) (8.314 J/mol.K) (20 0C)

Q = 2494.2 J

(b) What is the change, Eint in the internal energy of the helium during the temperature increase?

using a formula, we have

Eint = n CvT = n (1.5 R) T

Eint = (6 mol) (1.5) (8.314 J/mol.K) (20 0C)

Eint = 1496.5 J

(c) How much work W is done by the helium as it expands against the pressure of the surrounding water during the temperature increase?

we know that, W = n R T

W = (6 mol) (8.314 J/mol.K) (20 0C)

W = 997.6 J

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A) A bubble of 5 moles of Argon gas (Monatomic) is submerged underwater, and undergoes a...
A) A bubble of 5 moles of Argon gas (Monatomic) is submerged underwater, and undergoes a temperature increase of 25° C. How much heat was required in Joules? J B) 5 moles of Argon gas (Monatomic) undergoes a temperature increase of 25° C in a glass box with fixed volume? How much heat was required in Joules? C) A heat engine is operating between 367 C and 37 C. If the engine extracted 100 MJ of energy from fuel, how...
2.)1.0 mol sample of an ideal monatomic gas originally at a pressure of 1 atm undergoes...
2.)1.0 mol sample of an ideal monatomic gas originally at a pressure of 1 atm undergoes a 3-step process as follows:                  (i)         It expands adiabatically from T1 = 588 K to T2 = 389 K                  (ii)        It is compressed at constant pressure until its temperature reaches T3 K                  (iii)       It then returns to its original pressure and temperature by a constant volume process. A). Plot these processes on a PV diagram B). Determine the temperature T3 C)....
A cylinder of volume 0.320 m3 contains 11.1 mol of neon gas at 19.1°C. Assume neon...
A cylinder of volume 0.320 m3 contains 11.1 mol of neon gas at 19.1°C. Assume neon behaves as an ideal gas. (a) What is the pressure of the gas? Pa (b) Find the internal energy of the gas. J (c) Suppose the gas expands at constant pressure to a volume of 1.000 m3. How much work is done on the gas? J (d) What is the temperature of the gas at the new volume? K (e) Find the internal energy...
A cylinder of volume 0.290 m3 contains 11.9 mol of neon gas at 17.3°C. Assume neon...
A cylinder of volume 0.290 m3 contains 11.9 mol of neon gas at 17.3°C. Assume neon behaves as an ideal gas. (a) What is the pressure of the gas? Pa (b) Find the internal energy of the gas. J (c) Suppose the gas expands at constant pressure to a volume of 1.000 m3. How much work is done on the gas? J (d) What is the temperature of the gas at the new volume? K (e) Find the internal energy...
A cylinder fitted with a frictionless, massless piston contains compressed liquid water at a temperature T1=20C....
A cylinder fitted with a frictionless, massless piston contains compressed liquid water at a temperature T1=20C. The atmospheric pressure on the outside of the system is P=1.0 bar. Heat is then added until the water is completely converted to saturated vapor. (a) What are the changes in specific volume, v2-v1 (m3/kg) and internal energy, u2-u1 (kJ/kg) of the water for this process? (b) How much specific work, if any, is done by the system? (c) What is the amount of...
Please solve the following problems. You must show all work. 1. A 10.0 cm radius piston...
Please solve the following problems. You must show all work. 1. A 10.0 cm radius piston compresses a gas isothermally from a height of 15.0 cm to 2.50 cm at a constant pressure of 2.0 atm. a) How much heat was added to the gas? b) Now if 7000 J of heat is added to the system and the piston is only moves 5.0 cm up, what is the change in the internal energy of the system is the pressure...
A closed piston-cylinder system contains a 120 moles of neon, a monatomic ideal gas, at pressure...
A closed piston-cylinder system contains a 120 moles of neon, a monatomic ideal gas, at pressure PA = 2.5 atm and volume VA = 0.80 m3. It undergoes the following cyclic process: A -> B: I There is isothermal expansion to volume double of the original. B -> C: Constant-volume process back to its original pressure . C -> A: Constant-pressure process back to its initial state a) Draw a Pressure volume diagram for the cycle. You don't need to...
1. Under constant-volume conditions, 4200 J of heat is added to 1.4 moles of an ideal...
1. Under constant-volume conditions, 4200 J of heat is added to 1.4 moles of an ideal gas. As a result, the temperature of the gas increases by 103 K. How much heat would be required to cause the same temperature change under constant-pressure conditions? Do not assume anything about whether the gas is monatomic, diatomic, etc. 2. A system gains 3080 J of heat at a constant pressure of 1.36 × 105 Pa, and its internal energy increases by 4160...
You are ready to contrast the efficiency of a new technology against good ‘ol water boiling....
You are ready to contrast the efficiency of a new technology against good ‘ol water boiling. To do so you first must calculate values for that process. Given a closed system (like a pot with a lid) of 1kg of liquid water at 100C, What is the work done to convert all the water to steam? How much heat is transferred into the system to make this happen? (Recall, look up constants as needed) What is the change in internal...
A calorimeter is an insulated device in which a chemical reaction is contained. By measuring the...
A calorimeter is an insulated device in which a chemical reaction is contained. By measuring the temperature change, ΔT, we can calculate the heat released or absorbed during the reaction using the following equation: q=specific heat×mass×ΔT Or, if the calorimeter has a predetermined heat capacity, C, the equation becomes q=C×ΔT At constant pressure, the enthalpy change for the reaction, ΔH, is equal to the heat, qp; that is, ΔH=qp but it is usually expressed per mole of reactant and with...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT