Question

An automobile moves on a circular track of radius 1.04 km. It starts from rest from...

An automobile moves on a circular track of radius 1.04 km. It starts from rest from the point (x, y) = (1.04 km, 0 km) and moves counterclockwise with a steady tangential acceleration such that it returns to the starting point with a speed of 29.2 m/s after one lap. (The origin of the Cartesian coordinate system is at the center of the circular track.)

What are the car's position and velocity vectors when it is one-sixth of the way around the track? Express the vectors in terms of the unit vectors along the x- and y-axes.

r = ( _____)i + (_________)j km

v = (_______) i + (________)j m/s

What is the tangential acceleration at this point?

What is the centripetal acceleration at this point?

What is the least coefficient of static friction which will prevent the car from skidding in completing the first lap? (The answer needs to have at least 6 significant figures.)

Homework Answers

Answer #1

d = 2 pi r = 2 x pi x 1040 m

v0 = 0

vf = 29.2 m/s

vf^2 - vi^2 = 2 a d

29.2^2 - 0^2 = 2(2 x pi x 1040)(a)

a_t = 0.0652 m/s^2 .....Ans(tangential acceleration)


at d = 2 x pi x 1040 / 6  

v^2 - 0^2 = 2(2 x pi x 1040 / 6)(0.0652)

v = 11.92 m/s

at this time theta = 360/6 = 60 deg


r = 1.04 ( cos60 i + sin60 j)

r = 0.52i + 0.901 j km ....Ans

v = 11.92(cos(90+60)i + sin(60+90) j)

v = (-10.3 ) i + ( 5.96) j m/s ......Ans

centripetal acc. a = v^2 / r = 0.1366 m/s^2 .....Ans

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A car starts from rest and drives around a circular track with a radius of 45.0...
A car starts from rest and drives around a circular track with a radius of 45.0 m at constant tangential acceleration. If the car takes 27.0 s in its first lap around the track, (a) what is the magnitude of its overall acceleration at the end of that lap? (b) What angle does the acceleration vector make with a radius line?
A 1700 kg car starts from rest and drives around a flat 70-m-diameter circular track. The...
A 1700 kg car starts from rest and drives around a flat 70-m-diameter circular track. The forward force provided by the car's drive wheels is a constant 1300 N. Express your answers to two significant figures and include the appropriate units. a) What is the magnitude of the car's acceleration at t=10s? b) What is the direction of the car's acceleration at t=10s? Give the direction as an angle from the r-axis. c) If the car has rubber tires and...
A car moves clockwise around a circular path with radius 74.4 m. The car started from...
A car moves clockwise around a circular path with radius 74.4 m. The car started from rest at the point farthest to the west on the path, and has a constant tangential acceleration of 2.50 m/s2. 1, After the car has traveled one-fourth of the circumference, what is the speed of the car? 2. At this point, what is the radial acceleration component of the car? 3.  At this same point, what is the magnitude of the total acceleration of the...
1. An Earth satellite moves in a circular orbit 615 km above the Earth's surface. The...
1. An Earth satellite moves in a circular orbit 615 km above the Earth's surface. The period of the motion is 96.8 min. (a) What is the speed of the satellite? (b) What is the magnitude of the centripetal acceleration of the satellite? 2. A rotating fan completes 1200 revolutions every minute. Consider a point on the tip of a blade, at a radius of 0.17 m. (a) Through what distance does the point move in one revolution? (b) What...
10.4-5-6) A) A car traveling on a flat (unbanked), circular track accelerates uniformly from rest with...
10.4-5-6) A) A car traveling on a flat (unbanked), circular track accelerates uniformly from rest with a tangential acceleration of 2.10 m/s2. The car makes it one quarter of the way around the circle before it skids off the track. From these data, determine the coefficient of static friction between the car and track. ________ (Hint: You are not given a value of the radius of the track. Think through the problem using the symbol R for this value and...
Your task will be to derive the equations describing the velocity and acceleration in a polar...
Your task will be to derive the equations describing the velocity and acceleration in a polar coordinate system and a rotating polar vector basis for an object in general 2D motion starting from a general position vector. Then use these expressions to simplify to the case of non-uniform circular motion, and finally uniform circular motion. Here's the time-dependent position vector in a Cartesian coordinate system with a Cartesian vector basis: ⃗r(t)=x (t) ̂ i+y(t) ̂ j where x(t) and y(t)...
1. Usain Bolt sprints along the track, with his feet pushing down and behind him. Therefore...
1. Usain Bolt sprints along the track, with his feet pushing down and behind him. Therefore the track actually pushes Usain Bolt along the track. Group of answer choices True or False 2.You study two objects in motion, Object J and Object S. Each object has its own velocity graph, with same time and velocity scales. The slope of each graph is positive, upward and to the right  ⁄ but Object J's tilt angle is only 10º and Object S's tilt...
12. Through what angle in degrees does a 31 rpm record turn in 0.27 s 13....
12. Through what angle in degrees does a 31 rpm record turn in 0.27 s 13. Starting from rest, the same torque is applied to a solid sphere and a hollow sphere. Both spheres have the same size and mass, and both are rotating about their centers. After some time has elapsed, which sphere will be rotating faster? answer choices: a. hollow sphere b. They will be rotating equally fast c. solid sphere 14. In movies, it often happens that...
ch 6 1: It is generally a good idea to gain an understanding of the "size"...
ch 6 1: It is generally a good idea to gain an understanding of the "size" of units. Consider the objects and calculate the kinetic energy of each one. A ladybug weighing 37.3 mg flies by your head at 3.83 km/h . ×10 J A 7.15 kg bowling ball slides (not rolls) down an alley at 17.5 km/h . J A car weighing 1260 kg moves at a speed of 49.5 km/h. 5: The graph shows the ?-directed force ??...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT