Question

A jet of water comes out of a fountain. The water's initial velocity has a horizontal...

A jet of water comes out of a fountain. The water's initial velocity has a horizontal component 18 m/s
and a vertical component 13 m/s (up). The water follows a parabolic trajectory, like a cannonball.
What is the maximum height of the water above its starting point?

a). What is the horizontal component of the water's velocity at the highest point in its trajectory?

b)What is the vertical component of the water's velocity at the highest point in its trajectory?

c)How long does it take the water to reach the highest point in its trajectory?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A cannonball is shot in air such that its initial vertical velocity is 77 m/s and...
A cannonball is shot in air such that its initial vertical velocity is 77 m/s and its initial horizontal velocity is 12 m/s. Find (a) the time of flight of the cannonball, (b) the maximum vertical height it climbs (c) the horizontal distace it travels?
A cannonball is shot (from ground level) with an initial horizontal velocity of 33 m/s and...
A cannonball is shot (from ground level) with an initial horizontal velocity of 33 m/s and an initial vertical velocity of 25 m/s. What is the initial speed of the cannonball? What is the initial angle θ of the cannonball with respect to the ground? What is the maximum height the cannonball goes above the ground? How far from where it was shot will the cannonball land? What is the speed of the cannonball 3.6 seconds after it was shot?...
Initial velocity of a shell fired is 40 m/s at an angle of 60º above the...
Initial velocity of a shell fired is 40 m/s at an angle of 60º above the horizontal. Draw a schematic sketch of the projection motion and write down the basic equations needed to solve this problem. (a) Find horizontal and vertical components of shell’s initial velocity. (b) How long does it take for the shell to reach the maximum height above ground? (c) At its highest point, what are the horizontal and vertical components of its acceleration and velocity? (Ignore...
1) Water leaves a fireman’s hose (held near the ground) with an initial velocity v0 =...
1) Water leaves a fireman’s hose (held near the ground) with an initial velocity v0 = 21.5 m/s at an angle θ = 29° above horizontal. Assume the water acts as a projectile that moves without air resistance. Use a Cartesian coordinate system with the origin at the hose nozzle position. Part (a) Using v0, θ, and g, write an expression for the time, tmax, the water travels to reach its maximum vertical height. Part (b) At what horizontal distance...
For an object being launched at ground level at a tilted non-zero initial velocity, is the...
For an object being launched at ground level at a tilted non-zero initial velocity, is the velocity zero anywhere? Are the horizontal or vertical components of the velocity zero at any point? What is the shape of this trajectory? (Use the mathematical term). If an object is launched with a strictly horizontal initial velocity, what is the vertical component of the initial velocity? Will an object take longer, less, or the same amount of time to reach the ground if...
A water jet has an actual velocity of 88.256 m/s and a mass flow rate of...
A water jet has an actual velocity of 88.256 m/s and a mass flow rate of 17.745 kg/s. This jet strikes an upward curved vane moving at 20 ms–1 in a horizontal direction away from the jet, which deflects the water through an angle of 115º. The impact is shockless. Calculate: (i) the magnitude and direction of the velocity of the fluid leaving the vane; (ii) the thrust on the vane in a horizontal direction; (iii) the thrust on the...
A bullet shot from a small firearm has an initial velocity v0 of 52 m/s at...
A bullet shot from a small firearm has an initial velocity v0 of 52 m/s at an angle theta = 42 with respect to the horizontal. At the maximum trajectory (max height), we observe that, the bullet explodes into two small pieces both of which are of equal mass. One fragment  immediately after the explosion is therefore zero m/s and it falls vertically. How long (in seconds) does it take the shell to reach this point trajectory (max height)? What is...
7)A projectile is launched with velocity 68 m/s at an angle of 60° with the horizontal...
7)A projectile is launched with velocity 68 m/s at an angle of 60° with the horizontal (x-axis). The magnitude of the velocity at the highest point in its trajectory is ____________m/s.
An irrigation system has a 2.5 cm diameter hose, which shoots water at 60 ° from...
An irrigation system has a 2.5 cm diameter hose, which shoots water at 60 ° from the horizontal, at 5.5 m / s, and is placed on the ground. If we think that each droplet moves like a projectile, calculate: a- the maximum height that each droplet rises b- the time it takes to reach its maximum height c- the horizontal reach of the jet measured from the hose pistil
A 9.8 kg cannonball was fired from a cannon straight up with an initial velocity of...
A 9.8 kg cannonball was fired from a cannon straight up with an initial velocity of 42 m/s. (A) Assuming that all its initial kinetic energy was transformed into gravitational energy, what is the maximum height that the cannonball could reach? (B) Suppose that 20% of its initial kinetic energy was lost due to friction with the air (air resistance). What is the maximum height that the cannonball could now reach? (C) How long will it take, after the cannon...