Question

A car with a mass of 2000kg sits at the top of an incline. The incline...

A car with a mass of 2000kg sits at the top of an incline. The incline is 20.0 m long and makes a 30.0 degree slope with the horizontal. If an average friction force of 4200N impedes the motion, what is the speed of the car at the bottom of the hill? Use energy relationships to solve.

Homework Answers

Answer #1

i solved by both the method. Hope you understand througly . Please upvote my hardwork. Thanks

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 2.1 ✕ 103-kg car starts from rest at the top of a 4.7-m-long driveway that...
A 2.1 ✕ 103-kg car starts from rest at the top of a 4.7-m-long driveway that is inclined at 21° with the horizontal. If an average friction force of 4.0 ✕ 103 N impedes the motion, find the speed of the car at the bottom of the driveway.
A 1100-kg car sits at rest at the bottom of a 15 degree hill. The driver...
A 1100-kg car sits at rest at the bottom of a 15 degree hill. The driver initiates the accelerator and the engine pushes it up a 15 degree hill with a net force of 4500 N parallel to the hill. There is an effective 0.1 coefficient of kinetic friction. Use energy concepts to calculate the speed of the car after it has moved 40 m along the hill’s surface.
A 1100-kg car sits at rest at the bottom of a 15 degree hill. The driver...
A 1100-kg car sits at rest at the bottom of a 15 degree hill. The driver initiates the accelerator and the engine pushes it up a 15 degree hill with a net force of 4500 N parallel to the hill. There is an effective 0.1 coefficient of kinetic friction. Use energy concepts to calculate the speed of the car after it has moved 40 m along the hill’s surface.
A roller coaster car with a mass of 920.5 kg starts from rest at the top...
A roller coaster car with a mass of 920.5 kg starts from rest at the top of a 47.1 m hill labeled h1. The car travels to the bottom of the hill and continues up the next hill that is 12.5 m high and labeled h2. a.) Ignoring friction, what is the speed of the roller coaster car at the bottom of the hill? b.) Ignoring friction, what is the speed of the roller coaster car at the top of...
A 12.0-kg box is released from the top of an incline that is 5.00 m long...
A 12.0-kg box is released from the top of an incline that is 5.00 m long and makes an angle of 40.0o to the horizontal ground. A 60.0-N friction force is acted on the box to impede the motion of the box. A) Draw a free body diagram to show all the forces acting on the box. B) What would be the acceleration of the box? C) How much force (in N) parallel to the slope of incline is required...
A car of mass of 1350 kg travelling at 35.0 m/s along a highway runs out...
A car of mass of 1350 kg travelling at 35.0 m/s along a highway runs out of gas and starts to coast at the bottom of a hill 15.0m high. The length of the road is 540.0 m and the force of friction on the car is 750.0 N will the car make it to the top of the hill? I) if so, what will it’s speed be at that point? II) if not, how much energy would it need...
A block of mass m is initially held at rest at point P on an incline...
A block of mass m is initially held at rest at point P on an incline that makes an angle q with respect to horizontal. The coefficient of kinetic friction between the block and the incline is mk. After the block slides down the incline from point P, it starts to slide without friction up a vertical circular track of radius R. When it reaches the top of the circle, the normal force (downward) by the track to the block...
A block of mass 4.0Kg slides down an incline plane of length 10 meters that makes...
A block of mass 4.0Kg slides down an incline plane of length 10 meters that makes an angle of 30 degrees with the horizontal. The coefficient of kinetic friction between the block and the incline is 0.3. If the block is has an initial speed of 2mis down the incline at the top of the incline, then what is the speed at the bottom? Show calculations. Indicate answer. In the previous problem, what was the gain in Kinetic Energy? Show...
A 90 kg skier starts from the top of a hill with a 19 deg slope....
A 90 kg skier starts from the top of a hill with a 19 deg slope. The skier reaches the bottom of the slope 11 s later. a) If there is a constant friction force of 70 N which resists his motion, how long must be the incline of the hill? b) Draw a force diagram for the skier with labels and magnitudes. c) What is the coefficient of kinetic friction between the block and ramp? d) How much work...
A hollow ball of mass 2.88 kg and radius 0.309 m sits at rest on top...
A hollow ball of mass 2.88 kg and radius 0.309 m sits at rest on top of a hill of height 6.88 m. The ball can either slide down the hill without rolling or roll down without slipping. What is the difference in the ball's speed (in m/s) at the bottom of the hill between these two scenarios?