Question

Consider a 450 nm wavelength laser shining through two pinholes onto a semicircular screen, 2 m...

Consider a 450 nm wavelength laser shining through two pinholes onto a semicircular screen, 2 m away. The separation between the pinholes is 1200 nm.

1.What angles give bright and dark spots on the screen?

2.How many bright spots are there on the screen? How many dark spots? What is the path length difference for each?

please show all work

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
You send a laser beam with a wavelength of 190 nm through a grating with a...
You send a laser beam with a wavelength of 190 nm through a grating with a uniform slit separation of 455 nm. In the resulting interference pattern on a large distant screen, what are the angular locations θ of all of the bright spots in the interference pattern?
A laser beam with a wavelength of 490 nm passes through a double-slits with a separation...
A laser beam with a wavelength of 490 nm passes through a double-slits with a separation of 0.04 mm and falls on a screen 60 cm behind the slits. (a) Find the positions of the 1 st and 2nd order bright fringes respected to the center on the screen. (b) Find the position of the 1 st -order dark fringe respected to the center on the screen.
You have a red laser with a wavelength of 640 nm (1 nm = 10^-9 m)....
You have a red laser with a wavelength of 640 nm (1 nm = 10^-9 m). This laser is passed through diffraction grating with 1000 lines per mm. If the grating is 20 cm away from a screen, how far from the central bright dot will the next bright dot appear?
When laser light of wavelength 633.0 nm passes through a diffraction grating, the first bright spots...
When laser light of wavelength 633.0 nm passes through a diffraction grating, the first bright spots occur at ± 16.8 ∘ from the central maximum. Part A What is the line density (in lines/cm) of this grating? Part B How many additional pares of bright spots are there beyond the first bright spots?
Consider a source of light with wavelength λ = 490 nm that shines on two identical...
Consider a source of light with wavelength λ = 490 nm that shines on two identical narrow slits. The slits are separated by a distance a = 30 μm. An interference pattern is observed on a screen located a distance L away from the slits. On the screen, the location of the second dark spot to the left of the central bright spot is found to be y = 1.2 cm from the central bright spot. Let this particular position...
Light from a laser with a wavelength of 4.2×10-7 m shines through two slits and forms...
Light from a laser with a wavelength of 4.2×10-7 m shines through two slits and forms an interference pattern on a screen 1.8 m away. You measure the separation between the central bright fringe and the m=2 bright fringe to be 0.03 m. 1. What is the angle for the m=2 bright fringe (in degrees)? 2. What is the separation between the two slits? 3. What is the angle for the m=1 bright fringe? 4. What is the distance from...
A laser with wavelength d/8 is shining light on a double slit with slit separation 0.400mm...
A laser with wavelength d/8 is shining light on a double slit with slit separation 0.400mm . This results in an interference pattern on a screen a distance L away from the slits. We wish to shine a second laser, with a different wavelength, through the same slits. A) What is the wavelength ?2 of the second laser that would place its second maximum at the same location as the fourth minimum of the first laser, if d = 0.400mm...
3. Red light with wavelength 680 nm passes through a pair of slits with a separation...
3. Red light with wavelength 680 nm passes through a pair of slits with a separation of 61 microns. 3a). Find the scattering angle corresponding to the first bright fringe. 3b). If the diffraction pattern is projected onto a screen a distance L = 11 meters away, what is the separation g on the screen between the unscattered beam and that first bright fringe?
We aim a red (620 nm) laser onto a small screen that has two slits that...
We aim a red (620 nm) laser onto a small screen that has two slits that are 0.1 mm apart. Each slit has a width of 0.03 mm. The light coming out of the two slits is projected onto a big screen a distance X from the slits. In the photo on the right you can see the pattern that’s visible on the big screen. Using a ruler, we determine that the distance between two adjacent bright spots is equal...
1. A 680 nm laser illuminates a double slit apparatus with a slit separation distance of...
1. A 680 nm laser illuminates a double slit apparatus with a slit separation distance of 7.83 μm. On the viewing screen, you measure the distance from the central bright fringe to the 2nd bright fringe to be 88.2 cm. How far away (in meters) is the viewing screen from the double slits?   2. A 600 nm laser illuminates a double slit apparatus with a slit separation distance of 3.55 μm. The viewing screen is 1.50 meters behind the double...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT