Question

A block is oscillating on a spring scale with a period of 4.60 s. At t...

A block is oscillating on a spring scale with a period of 4.60 s. At t = 0.00 s the package has zero speed and is at x = 8.30 cm. At what time after t = 0.00 s will the package first be at x = 4.15 cm?

Homework Answers

Answer #1

Time period of oscillation, T = 4.60 s

Angular speed of te oscillating block, ω = (2 π) / T = (2π / 4.60) rad/s

Let the amplitude of oscillation is A

Then, the position of the block is

x(t) = A sin (ω t + φ) ; where φ is the phase

Now we will the given conditions to find out the position of the spring.

Condition 1: At t = 0.00 s, x = 8.30 cm

Condition 2: At t = 0.00 s, speed of the block, v = 0.00 cm/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block oscillating on a spring has period T = 2.2 s . Note: You do...
A block oscillating on a spring has period T = 2.2 s . Note: You do not know values for either m or k. Do not assume any particular values for them. The required analysis involves thinking about ratios. Part A What is the period if the block's mass is quadrupled? Express your answer with the appropriate units. T = Part B What is the period if the value of the spring constant is tripled? What is the period if...
An oscillating block-spring system has a mechanical energy of 2.46 J, an amplitude of 12.5 cm,...
An oscillating block-spring system has a mechanical energy of 2.46 J, an amplitude of 12.5 cm, and a maximum speed of 1.29 m/s. Find (a) the spring constant, (b) the mass of the block and (c) the frequency of oscillation.
An oscillating block–spring system has a mechanical energy of 5.00 J, an amplitude of 22.0 cm,...
An oscillating block–spring system has a mechanical energy of 5.00 J, an amplitude of 22.0 cm, and a maximum speed of 3.20 m/s. Find the frequency of oscillation.
a) A block with a mass of 0.600 kg is connected to a spring, displaced in...
a) A block with a mass of 0.600 kg is connected to a spring, displaced in the positive direction a distance of 50.0 cm from equilibrium, and released from rest at t = 0. The block then oscillates without friction on a horizontal surface. After being released, the first time the block is a distance of 15.0 cm from equilibrium is at t = 0.200 s. What is the block's period of oscillation? _______ s b) A block with a...
An air track glider attached to a spring oscillates with a period 1.50 s. At t=0...
An air track glider attached to a spring oscillates with a period 1.50 s. At t=0 s the glider is 4.60 cm left of the equilibrium position and moving to the right at 33.4 cm/s. a) What is the phase constant?
a.) A 100 g mass is oscillating on a spring with a spring constant of 3.0...
a.) A 100 g mass is oscillating on a spring with a spring constant of 3.0 N/m. The mass is initially at 15 cm from the equilibrium position with an initial speed of 80 cm/s. What is the oscillation amplitude? b.) A 200 g mass is oscillating on a spring with a spring constant of 4.0 N/m. The mass is initially at 15 cm from the equilibrium position with an initial speed of 50 cm/s. What is its maximum speed?
A mass on a spring is set oscillating by first compressing the spring 3cm in the...
A mass on a spring is set oscillating by first compressing the spring 3cm in the negative direction, then releasing the mass from rest. The period of oscillation is 1s. Which equation(s) best describes the position as a function of time? Select one or more: A. x = 3cm cos(2π t +π) B. x = -3cm cos(2π t + 0 ) C. x = 3cm cos(2π t + π/2 ) D. x = 3cm cos(2π t - π/2 )
Q1-For a mass 206g oscillating on a spring, its maximum speed is 0.75m/s. If the spring...
Q1-For a mass 206g oscillating on a spring, its maximum speed is 0.75m/s. If the spring constant is 71.2N/m, what is the maximum stretch (in unit of cm) of the spring during oscillation? Q2-A spring is stretched, and stores an elastic potential energy of 332 joule. How much (in cm) has the spring be stretched if it has a spring constant of 136 N/m? Q3For the application part of this experiment, you have a spring of spring constant 154N/m. You...
A block attached to the end of a spring moves in simple harmonic motion according to...
A block attached to the end of a spring moves in simple harmonic motion according to the position function  where the period of the motion is 4.0 s and the amplitude of the motion is 15 cm. g) Determine the first time at which the position of the block is -1.2 cm. ______ s h) Determine the first time at which the velocity of the block is -8.5 cm/s. ______ s i) Determine the first time at which the acceleration of...
13.7 The equation for the position as a function of time for an oscillating spring is...
13.7 The equation for the position as a function of time for an oscillating spring is given by x  30cmcos 25t where x is in centimeters when t is in seconds. a) What is the frequency? b) If the mass on the spring is 1.2 kg, what is the spring constant of the spring? c) What is the position at t = 0.025 s? d) What is the position at t = 0.09 s ? 13.8 The maximum potential...