Question

A pair of slits is located near a screen in such a way that light incident...

A pair of slits is located near a screen in such a way that light incident on the slits can form a double slit interference pattern on the screen.

1. Which of the following actions performed by itself would increase the angular position of the m = 4 maximum of the pattern (more than one answer may be correct)?

a.use light with a longer wavelength

b.use light with a shorter wavelength

c.increase the distance from the slits to the screen

d.decrease the distance from the slits to the screen

e.use slits which are farther apart

f.use slits which are closer together

2. Which of the following actions performed by itself would decrease the distance along the screen between the pattern's center and the m = 3 minimum of the pattern (more than one answer may be correct)?

a.use light with a longer wavelength

b.use light with a shorter wavelength

c.increase the distance from the slits to the screen

d.decrease the distance from the slits to the screen

e.use slits which are farther apart

f.use slits which are closer together

Homework Answers

Answer #1


1. we know that the angular positionis d sin theta = m*Lmbda


d- slit separation , Lambda - wavelength , as the distance from slit to screen is very large then the waves would be parallel to each other

so the options are

  

   a..use light with a longer wavelength
  
   f.use slits which are closer together

2.

we know the distance from central finge to the mth fringe is B = m*Lambda*D/d


   D- distance between slits and screen
   d- slit separati0n
   Lambda - wavelength

so the answers are

   b.use light with a shorter wavelength
  
   d.decrease the distance from the slits to the screen
  
   e.use slits which are farther apart

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Blue light falling on a double-slit produces interference fringes on a screen. What will happen to...
Blue light falling on a double-slit produces interference fringes on a screen. What will happen to the fringes (closer together, farther apart, remain the same, or no more fringes) if The blue light is replaced by red light? The blue light is replaced by incoherent light? The separation between the slits is decreased? The distance to the screen is decreased? The entire experiment is immersed in water?
1-Two slits are placed 0.2 mm apart and project an intereference pattern on a screen which...
1-Two slits are placed 0.2 mm apart and project an intereference pattern on a screen which is 1 meter away. If the distance between the central and the 3rd fringe is 7.5 mm on the screen what is the wavelength of the light used? 2-In a double slit experiment where light of wavelength of 0.00006 cm is used, the distance of the screen from the slits is 1.0 meter and the slit separation is 0.1 mm. What is the spacing...
A double-slit experiment produces an interference pattern on a screen 2.8 m away from slits. Light...
A double-slit experiment produces an interference pattern on a screen 2.8 m away from slits. Light of wavelength λ= 460 nm  falls on the slits from a distant source. The distance between adjacent bright fringes is 6.2 mm. A) Find the distance between the two slits B) Determine the distance to the 6th order dark fringe from the central fringe
Two slits spaced 0.455 mm apart are placed 50.0 cm from a screen. What is the...
Two slits spaced 0.455 mm apart are placed 50.0 cm from a screen. What is the distance between the second and third dark lines of the interference pattern on the screen when the slits are illuminated with coherent light with a wavelength of 540 nm? mm
Double-Slit Interference A pair of slits, separated by 0.120 mm, is illuminated by light of wavelength...
Double-Slit Interference A pair of slits, separated by 0.120 mm, is illuminated by light of wavelength 643 nm. An interference pattern is observed on a screen 112 cm from the slits. Consider a point on the screen located at y = 2.10 cm from the central maximum of the pattern… a) What is the path difference (in nm) for the two slits at location y? b) What is the path difference in waves? c) Is this a maximum, a minimum...
A monochromatic light with wavelength 480.0 nm strikes a pair of narrow slits with spacing 0.100...
A monochromatic light with wavelength 480.0 nm strikes a pair of narrow slits with spacing 0.100 mm. The first dark fringe is formed on a screen at a vertical distance of 1.20 cm from the center of a screen placed in front of the slit. How far away is the screen placed What is the distance on the screen from the center of the interference pattern to the m = 3 bright fringe? What is the shortest distance from the...
Laser light of an unknown wavelength falls incident on a pair of slits separated by 25.0...
Laser light of an unknown wavelength falls incident on a pair of slits separated by 25.0 µm. This produces an interference pattern on a screen 1.80 m away with the first-order bright fringe being 39.7 mm from the center of the central maximum. What is the wavelength of the laser light?
A pair of slits, separated by 0.1 mm, is illuminated by light having a wavelength of...
A pair of slits, separated by 0.1 mm, is illuminated by light having a wavelength of 500 nm. An interference pattern is observed on a screen 1.20 m from the slits. (a) Draw the diagram of the double slits and determine how far apart will adjacent bright interference fringes on the screen? (b) What are the angles of the first and second order fringes with respect to the zeroth order fringe? (c) Determine the position of the first and second...
Two slits spaced 0.400 mm apart are placed 72.0 cm from a screen. Part A What...
Two slits spaced 0.400 mm apart are placed 72.0 cm from a screen. Part A What is the distance between the second and third dark lines of the interference pattern on the screen when the slits are illuminated with coherent light with a wavelength of 530 nm ? (delta y=_in mm)
In a double-slit experiment what will happen to the interference pattern shown on the screen if...
In a double-slit experiment what will happen to the interference pattern shown on the screen if a) the wavelength of the light is increased? b) the distance between the slits is increased? c) the screen is moved further away from the slits?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT