Question

A gas in a cylinder expands from a volume of 0.150 m^3 to 0.390 m^3 ....

A gas in a cylinder expands from a volume of 0.150 m^3 to 0.390 m^3 . Heat flows into the gas just rapidly enough to keep the pressure constant at 1.90×10^5 Pa during the expansion. The total heat added is 1.15×10^5 J a)Find the change in internal energy of the gas.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A cylinder containing an ideal gas has a volume of 2.6 m3 and a pressure of...
A cylinder containing an ideal gas has a volume of 2.6 m3 and a pressure of 1.5× 105 Pa at a temperature of 300 K. The cylinder is placed against a metal block that is maintained at 900 K and the gas expands as the pressure remains constant until the temperature of the gas reaches 900 K. The change in internal energy of the gas is +6.0× 105 J. How much heat did the gas absorb? a. 1.4E+6 J b....
A cylinder of volume 0.280 m3 contains 10.9 mol of neon gas at 20.8°C. Assume neon...
A cylinder of volume 0.280 m3 contains 10.9 mol of neon gas at 20.8°C. Assume neon behaves as an ideal gas. (a) What is the pressure of the gas? Pa (b) Find the internal energy of the gas. J (c) Suppose the gas expands at constant pressure to a volume of 1.000 m3. How much work is done on the gas? J (d) What is the temperature of the gas at the new volume? K (e) Find the internal energy...
A cylinder of volume 0.320 m3 contains 11.1 mol of neon gas at 19.1°C. Assume neon...
A cylinder of volume 0.320 m3 contains 11.1 mol of neon gas at 19.1°C. Assume neon behaves as an ideal gas. (a) What is the pressure of the gas? Pa (b) Find the internal energy of the gas. J (c) Suppose the gas expands at constant pressure to a volume of 1.000 m3. How much work is done on the gas? J (d) What is the temperature of the gas at the new volume? K (e) Find the internal energy...
A cylinder of volume 0.290 m3 contains 11.9 mol of neon gas at 17.3°C. Assume neon...
A cylinder of volume 0.290 m3 contains 11.9 mol of neon gas at 17.3°C. Assume neon behaves as an ideal gas. (a) What is the pressure of the gas? Pa (b) Find the internal energy of the gas. J (c) Suppose the gas expands at constant pressure to a volume of 1.000 m3. How much work is done on the gas? J (d) What is the temperature of the gas at the new volume? K (e) Find the internal energy...
A volume of 1.50 L of argon gas is confined in a cylinder with a movable...
A volume of 1.50 L of argon gas is confined in a cylinder with a movable piston under a constant pressure of 1.22 x 10^5 Pa. when 1.25 kJ of energy in the form of heat is transferred from the surrounding to the gas, the internal energy of the gas increases by 1.11 kJ. What is the final volume of Argon gas in the cylinder?
When the gas expands at constant pressure 180 Pa, the increase in volume is 1.5 m3...
When the gas expands at constant pressure 180 Pa, the increase in volume is 1.5 m3 and the heat lost by the gas 300J. Evaluate the change in internal energy?
The gas inside a cylinder expands against a constant external pressure of 0.943 atm from a...
The gas inside a cylinder expands against a constant external pressure of 0.943 atm from a volume of 3.35 L to a volume of 14.40 L. In doing so, it turns a paddle immersed in 0.951 L of liquid octane (C8H18). Calculate the temperature rise of the liquid, assuming no loss of heat to the surroundings or frictional losses in the mechanism. Take the density of liquid C8H18 to be 0.703 g cm-3 and its specific heat to be 2.22...
A cylinder containing 10.8 moles of a monatomic ideal gas expands from circled A to circled...
A cylinder containing 10.8 moles of a monatomic ideal gas expands from circled A to circled B along the path shown in the figure below. A pressure-volume graph is plotted on a coordinate plane, where the horizontal axis is V (m3), and the vertical axis is P (kPa). The path consists of five line segments: a segment from point A (1.00,10.0) to (2.00,10.0) a segment from (2.00,10.0) to (3.00,40.0) a segment from (3.00,40.0) to (4.00,40.0) a segment from (4.00,40.0) to...
When gas expands in a cylinder with radius r, the pressure P at any given time...
When gas expands in a cylinder with radius r, the pressure P at any given time is a function of the volume V: P = P(V). The force exerted by the gas on the piston (see the figure) is the product of the pressure and the area: F = πr2P. The work done by the gas when the volume expands from volume V1 to volume V2 is W = V2 P dV V1 . In a steam engine the pressure...
A cylinder with a moving piston expands from an initial volume of 0.250 L against an...
A cylinder with a moving piston expands from an initial volume of 0.250 L against an external pressure of 1.00 atm . The expansion does 277 J of work on the surroundings. What is the final volume of the cylinder?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT