Question

A scientist builds a device to measure the speed of a golf ball. The 0.05kg ball...

A scientist builds a device to measure the speed of a golf ball. The 0.05kg ball is fired into a 0.20kg box at the outer edge of a record turntable (a disk of mass=0.40kg and radius=0.25m). The box catches the ball and the turntable spins with an angular velocity of 1.40 rad/sec.

Calculate the following quantities:

a- moment of inertia of the turntable

b- moment of inertia of the box

c- moment of inertia of the ball (when it hits the box)

d- initial speed of the golf ball (Hint: use conservation of angular momentum)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A horizontal turntable is made from a uniform solid disk and is initially rotating with angular...
A horizontal turntable is made from a uniform solid disk and is initially rotating with angular velocity of 7.1 rad/s about a fixed vertical axis through its center. The turntable has a radius of 0.23 m and a moment of inertia of 0.04761 kg m2 about the rotation axis. A piece of clay, initially at rest, is dropped onto the turntable and sticks to it at a distance d= 0.16 m from its center as shown in the figure. The...
A very thin 2.0-kg disk with a diameter of 80 cm is mounted horizontally to rotate...
A very thin 2.0-kg disk with a diameter of 80 cm is mounted horizontally to rotate freely about a central vertical axis. On the edge of the disk, sticking out a little, is a small, essentially massless, tab or "catcher." A 2.0-g wad of clay is fired at a speed of 14.0 m/s directly at the tab perpendicular to it and tangent to the disk. The clay sticks to the tab, which is initially at rest, at a distance of...
A golf club driver is swung and hits a golf ball. The driver has a shaft...
A golf club driver is swung and hits a golf ball. The driver has a shaft of length L and a head. To simplify the problem, we will neglect the mass of the driver shaft entirely. The driver head we will assume is a uniform density sphere of radius R and mass M. The golf ball is a uniform density sphere of radius r and mass  m. Initially the ball is at rest, with zero linear velocity, v → 2 i...
A) A man holds a 185-N ball in his hand, with the forearm horizontal (see the...
A) A man holds a 185-N ball in his hand, with the forearm horizontal (see the figure). He can support the ball in this position because of the flexor muscle force , which is applied perpendicular to the forearm. The forearm weighs 18.2 N and has a center of gravity as indicated. Find (a) the magnitude of and the (b) magnitude and (c) direction (as a positive angle counterclockwise from horizontal) of the force applied by the upper arm bone...
3.) What is the most accurate statement concerning the spring constant (k)?          A. The spring...
3.) What is the most accurate statement concerning the spring constant (k)?          A. The spring constant is the ratio of the displacement of the spring from its equilibrium position divided by the force applied to the spring          B. When the displacement of the spring from its equilibrium position is plotted (y-axis) against the force applied to the spring that caused             C. Spring constant is a unitless number related to the “stiffness” or strength of the spring.            ...
1) A torque of 1.20 N m is applied to a thin rod of mass 2.50...
1) A torque of 1.20 N m is applied to a thin rod of mass 2.50 kg and length 50.0 cm pivoted about its center and at rest. How fast is the rod spinning after 4.25 s? a. 32.6 rad/s b. 8.16 rad/s c. 97.9 rad/s d. 24.5 rad/s 2) A torque of 1.20 N m is applied to a thin rod of mass 2.50 kg and length 50.0 cm pivoted about one end and at rest. How fast is...