Question

a small bullet of mass m= 6 g staright up collides which a massive block of...

a small bullet of mass m= 6 g staright up collides which a massive block of wood. At the time of impact of the speed of the bullet is V_i = 8 m/s. The block has a mass m= 5 kg and is initially vest on the table as shown in the picture. In the collision the bullet gets embeded in the block. After the collision the block and bullet system rises up to a maximum height H. The collision process is extremly fast and only last 0.0150s.

a) Calculate the final velocity of the block and bullet system imediately after the collision

b) The average force the bullet exerted on the block during the collision.

c) The average force the bullet exerted on the bullet during the collision

d) Maximum height that the block and bullet will rise after the collision

e) mechanical energy of the block and bullet lost during the collision.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A bullet with mass m(lowercase m) is fired into a block of wood with mass M(uppercase...
A bullet with mass m(lowercase m) is fired into a block of wood with mass M(uppercase M), suspended like a pendulum, and makes a completely inelastic collision with it. After the impact of the bullet, the block swings up to a maximum height h. Given the values of h = 5.00 cm = 0.0500 m, m = 6.75 g = 0.00675 kg, and M = 2.50 kg, (a) What is the (initial) velocity v_x of the bullet in m/s? (b)...
A rifle bullet with mass 15.0 g strikes and embeds itself in a block of mass...
A rifle bullet with mass 15.0 g strikes and embeds itself in a block of mass 1.500 kg that rests on a frictionless, horizontal surface and is attached to a coil spring. The spring was relaxed at the beginning. The spring constant is 550 N/m. The initial velocity of the bullet was 700 m/s. The impact compresses the spring by x (see figure below). 1) Find the magnitude of the block's velocity (with the bullet stuck inside) after the impact...
2.00-kg block A traveling east at 20.0 m/s collides with 3.00-kg block B traveling west at...
2.00-kg block A traveling east at 20.0 m/s collides with 3.00-kg block B traveling west at 10.0 m/s. After the collision, block A has a velocity of 5.00 m/s due west. (a) How much kinetic energy was lost during the collision? (b) If the blocks were in contact for 75 ms, determine the magnitude and direction of average force exerted on block A.
A small bullet of mass m=0.27g and speed v=13m/s embeds in a block of mass M=0.98kg...
A small bullet of mass m=0.27g and speed v=13m/s embeds in a block of mass M=0.98kg suspended by a massless string of length L, after a collision as shown in the figure. If the bullet will appear on the other side of the block M with a speed v'=3.6m/s, instead of being embedded in it, find the maximum height the block M can reach. (Take g=9.81 m/s2). Express your answer using two decimal places.
A small bullet of mass m=0.73g and speed v=13.5m/s embeds in a block of mass M=0.69kg...
A small bullet of mass m=0.73g and speed v=13.5m/s embeds in a block of mass M=0.69kg suspended by a massless string of length L, after a collision as shown in the figure. If the bullet will appear on the other side of the block M with a speed v'=5.6m/s, instead of being embedded in it, find the maximum height the block Mcan reach. (Take g=9.81 m/s2). Express your answer using two decimal places.
A wood block of Mass M=3.00 kg and rests horizontally at the bottom of a ramp....
A wood block of Mass M=3.00 kg and rests horizontally at the bottom of a ramp. A bullet of mass m=0.0420kg with an intial velocity v0 is fired at the wood block and embedded inside the block. The wood blocl and the embedded bullet together move up the ramp and reach a vertical heigh of yf= 2.40m relative to the bottom of the rmap(yo=0) before sliding downward. Ignore friction/air resistance. a) What is the total mechanical energy of the block+bullets...
A 100-g bullet is fired horizontally into a 14.9-kg block of wood resting on a horizontal...
A 100-g bullet is fired horizontally into a 14.9-kg block of wood resting on a horizontal frictionless surface, and the bullet becomes embedded in the block. If the muzzle speed of the bullet is 250. m/s, a) what is the speed of the block immediately after the impact? b) what is the average force acting on the block during that 8.50 ms collision?
A 75 g bullet is shot at a initial horizontal velocity of 150 m/s and makes...
A 75 g bullet is shot at a initial horizontal velocity of 150 m/s and makes a completely inelastic collision with a 4.0 kg block of wood connected to a hanging pendulum. What is the maximum height the pendulum, containing the combined mass of the bullet and block of wood, reaches?
A bullet of mass m = 8.00 g is fired into a block of mass M...
A bullet of mass m = 8.00 g is fired into a block of mass M = 250 g that is initially at rest at the edge of a table of height h = 1.00 m. The bullet remains in the block, and after the impact the block lands d = 2.00 m from the bottom of the table. Determine the initial speed of the bullet.
a bullet of mass m=5g is fired into a wooden block with mass M= 0.995 kg...
a bullet of mass m=5g is fired into a wooden block with mass M= 0.995 kg which then compresses a spring (k=100N/m by a distance of x=0.1 before coming to rest. the bullet remains embedded in the wooden block. ignore friction between the block and table. a) what is initial speed of the bullet? b) calculate total kinetic energy of the bullet block-system immediately before and after the collision. is the collision between the bullet and the block elastic or...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT