Question

A block of mass M = 4.80 kg, at rest on a horizontal frictionless table, is...

A block of mass M = 4.80 kg, at rest on a horizontal frictionless table, is attached to a rigid support by a spring of constant k = 6280 N/m. A bullet of mass m = 9.80 g and velocity   of magnitude 650 m/s strikes and is embedded in the block (the figure). Assuming the compression of the spring is negligible until the bullet is embedded, determine (a) the speed of the block immediately after the collision and (b) the amplitude of the resulting simple harmonic motion.

(a) Number Enter your answer for part (a) in accordance to the question statement Units Choose the answer for part (a) from the menu in accordance to the question statement

This answer has no units° (degrees)mkgsm/sm/s^2NJWN/mkg·m/s or N·sN/m^2 or Pakg/m^3gm/s^3times

(b) Number Enter your answer for part (b) in accordance to the question statement Units Choose the answer for part (b) from the menu in accordance to the question statement

This answer has no units° (degrees)mkgsm/sm/s^2NJWN/mkg·m/s or N·sN/m^2 or Pakg/m^3gm/s^3times

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A simple harmonic oscillator consists of a block of mass 3.10 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 3.10 kg attached to a spring of spring constant 460 N/m. When t = 0.530 s, the position and velocity of the block are x = 0.174 m and v = 4.050 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s? (a) Number Enter your answer for part (a) in accordance to the question...
A block of wood has a mass of 3.81 kg and a density of 535 kg/m3....
A block of wood has a mass of 3.81 kg and a density of 535 kg/m3. It is to be loaded with lead (1.13 × 104 kg/m3) so that it will float in water with 0.838 of its volume submerged. What mass of lead is needed if the lead is attached to (a) the top of the wood and (b) the bottom of the wood? (a) Number Enter your answer for part (a) in accordance to the question statement Units...
A plane, diving with constant speed at an angle of 44.9° with the vertical, releases a...
A plane, diving with constant speed at an angle of 44.9° with the vertical, releases a projectile at an altitude of 635 m. The projectile hits the ground 5.96 s after release. (a) What is the speed of the plane? (b) How far does the projectile travel horizontally during its flight? What were the magnitudes of the (c) horizontal and (d) vertical components of its velocity just before striking the ground? (State your answers to (c) and (d) as positive...
A uniform spherical shell of mass M = 14.0 kg and radius R = 0.770 m...
A uniform spherical shell of mass M = 14.0 kg and radius R = 0.770 m can rotate about a vertical axis on frictionless bearings (see the figure). A massless cord passes around the equator of the shell, over a pulley of rotational inertia I = 0.170 kg·m2 and radius r = 0.0950 m, and is attached to a small object of mass m = 3.50 kg. There is no friction on the pulley's axle; the cord does not slip...
In the figure, you throw a ball toward a wall at speed 23.0 m/s and at...
In the figure, you throw a ball toward a wall at speed 23.0 m/s and at angle θ0 = 35.0˚ above the horizontal. The wall is distance d = 16.0 m from the release point of the ball. (a) How far above the release point does the ball hit the wall? What are the (b) horizontal and (c) vertical components of its velocity as it hits the wall? (a) Number Enter your answer for part (a) in accordance to the...
A block of mass M = 5.80 kg, at rest on a horizontal frictionless table, is...
A block of mass M = 5.80 kg, at rest on a horizontal frictionless table, is attached to a rigid support by a spring of constant k = 6250 N/m. A bullet of mass m = 8.30 g and velocity of magnitude 570 m/s strikes and is embedded in the block (the figure). Assuming the compression of the spring is negligible until the bullet is embedded, determine (a) the speed of the block immediately after the collision and (b) the...
A block of mass M = 5.60 kg, at rest on a horizontal frictionless table, is...
A block of mass M = 5.60 kg, at rest on a horizontal frictionless table, is attached to a rigid support by a spring of constant k = 5860 N/m. A bullet of mass m = 9.20 g and velocity ModifyingAbove v With right-arrow of magnitude 660 m/s strikes and is embedded in the block (the figure). Assuming the compression of the spring is negligible until the bullet is embedded, determine (a) the speed of the block immediately after the...
ANSWER ASAP PLEASEEEE A block with a mass of 0.85 kg rests on a horizontal, frictionless...
ANSWER ASAP PLEASEEEE A block with a mass of 0.85 kg rests on a horizontal, frictionless surface and is attached to an unstretched spring of length 20 cm. The spring constant of the spring is 9.5 x 103 N/m. The spring is attached to a wall at its other end. A 7.50-grams, 9-mm-diameter bullet is fired into the block at a speed of 350 m/s and embeds itself in the block. The system now starts oscillating. A. Treat the collision...
A wooden block is at rest on a frictionless horizontal surface and is connected to a...
A wooden block is at rest on a frictionless horizontal surface and is connected to a spring (k =150 N/m). The mass of the wooden block is 0.10 kg. A bullet (mass 0.012 kg) and velocity 270 m/s is fired horizontally into the wooden block. After collision the bullet stays in the block. (a) Find the speed of the bullet-block system right after the collision. (b) If the bullet-block system compresses the spring by a maximum of d. Find d
A 58 gram bullet with a horizontal velocity of 240 m/s hits a 1.3 kg block...
A 58 gram bullet with a horizontal velocity of 240 m/s hits a 1.3 kg block of wood attached to a massless spring with spring constant 340 N/m. The bullet is embedded in the block and the block is resting on a frictionless horizontal surface. How far does the spring compress?