Question

In deep space, sphere A of mass 98 kg is located at the origin of an...

In deep space, sphere A of mass 98 kg is located at the origin of an x axis and sphere B of mass 95 kg is located on the axis at x = 2.2 m. Sphere B is released from rest while sphere A is held at the origin. (a) What is the gravitational potential energy of the two-sphere system just as B is released? (b) What is the kinetic energy of B when it has moved 0.61 m toward A?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1.Zero, a hypothetical planet, has a mass of 4.9 x 1023 kg, a radius of 3.3...
1.Zero, a hypothetical planet, has a mass of 4.9 x 1023 kg, a radius of 3.3 x 106 m, and no atmosphere. A 10 kg space probe is to be launched vertically from its surface. (a) If the probe is launched with an initial kinetic energy of 5.0 x 107 J, what will be its kinetic energy when it is 4.0 x 106 m from the center of Zero? (b) If the probe is to achieve a maximum distance of...
An experiment is performed in deep space with two uniform spheres, one with mass 20.0 kg...
An experiment is performed in deep space with two uniform spheres, one with mass 20.0 kg and the other with mass 108.0 kg . They have equal radii, r = 0.30 m . The spheres are released from rest with their centers a distance 40.0 m apart. They accelerate toward each other because of their mutual gravitational attraction. You can ignore all gravitational forces other than that between the two spheres. A. When their centers are a distance 28.0 m...
Three 5.0 kg spheres are distributed as follows. Sphere A is located at the origin, sphere...
Three 5.0 kg spheres are distributed as follows. Sphere A is located at the origin, sphere B is located at x = 0.30 m y = 0 m, and sphere C is located at x = 0 m and y = 0.40 m. Find the net gravitational force vector that sphere A experiences.
A uniform sphere with mass 60.0 kg is held with its center at the origin, and...
A uniform sphere with mass 60.0 kg is held with its center at the origin, and a second uniform sphere with mass 90.0 kg is held with its center at the point x = 0, y = 3.00 m. A third uniform sphere with mass 0.600 kg placed at the point x = 4.00 m, y = 0. A) What is the magnitude of the net gravitational force due to 60.0 kg and 90.0 kg spheres on 0.600 kg sphere....
A proton is located at the origin, and a second proton is located on the x-axis...
A proton is located at the origin, and a second proton is located on the x-axis at x1 = 5.56 fm (1 fm = 10?15 m). (a) Calculate the electric potential energy associated with this configuration. J (b) An alpha particle (charge = 2e, mass = 6.64 ? 10?27 kg) is now placed at (x2, y2) = (2.78, 2.78) fm. Calculate the electric potential energy associated with this configuration. J (c) Starting with the three particle system, find the change...
A proton is located at the origin, and a second proton is located on the x-axis...
A proton is located at the origin, and a second proton is located on the x-axis at x1 = 6.96 fm (1 fm = 10−15 m). (a) Calculate the electric potential energy associated with this configuration. J (b) An alpha particle (charge = 2e, mass = 6.64 ✕ 10−27 kg) is now placed at (x2, y2) = (3.48, 3.48) fm. Calculate the electric potential energy associated with this configuration. J (c) Starting with the three particle system, find the change...
A proton is located at the origin, and a second proton is located on the x-axis...
A proton is located at the origin, and a second proton is located on the x-axis at x = 6 fm (1 fm = 10-15 m). (ma = 6.64 × 10-27 kg, e = 1.6 × 10-19 C) (a) Calculate the electric potential energy associated with this configuration. (b) An alpha particle (charge = 2e, mass = 6.64 x 10-27 kg) is now placed at (x, y) = (3, 5) fm. Calculate the electric potential energy associated with this configuration....
M1 is a spherical mass (49.0 kg) at the origin. M2 is also a spherical mass...
M1 is a spherical mass (49.0 kg) at the origin. M2 is also a spherical mass (12.1 kg) and is located on the x-axis at x = 96.2 m. At what value of x would a third mass with a 20.0 kg mass experience no net gravitational force due to M1 and M2?
M1 is a spherical mass (47.4 kg) at the origin. M2 is also a spherical mass...
M1 is a spherical mass (47.4 kg) at the origin. M2 is also a spherical mass (13.3 kg) and is located on the x-axis at x = 96.2 m. At what value of x would a third mass with a 20.0 kg mass experience no net gravitational force due to M1 and M2?
4.) A unknown point mass is located at x = -2.5 m, y = 0 m,...
4.) A unknown point mass is located at x = -2.5 m, y = 0 m, a point mass of 5 kg is located at x = +2.9 m, y = 0 m, a point mass of 2 kg is located at x = 0 m, y = -2 m, and a point mass of 2 kg is located at x = 0 m, y = +2 m. The moment of inertia about the z axis (origin) is 95 kg...