Question

An experimental is conducted to investigate the
photoelectric effect with a Barium plate. When the wavelength of
the incident light is less than 500.0 nm the plate starts emitting
electrons.

a) what is the threshold frequency of the Barium plate?

b) what is the work function of Barium?

The wavelength of the incident light is charged to 300.0 nm.

c) what is the kinetic energy of the photoelectrons?

Answer #1

The work function for copper is 4.5 eV.
(a) Find the threshold frequency and wavelength for the
photoelectric effect to occur when monochromatic electromagnetic
radiation is incident on the surface of a sample of copper.
Hz
nm
(b) Find the maximum kinetic energy of the electrons if the
wavelength of the incident light is 190 nm.
eV
(c) Find the maximum kinetic energy of the electrons if the
wavelength of the incident light is 240 nm.
eV

The work function for gold is 5.01 eV.
(a) Find the threshold frequency and wavelength for the
photoelectric effect to occur when monochromatic electromagnetic
radiation is incident on the surface of a sample of gold. In Hz and
nm
(b) Find the maximum kinetic energy of the electrons if the
wavelength of the incident light is 160 nm.in eV (
c) Find the maximum kinetic energy of the electrons if the
wavelength of the incident light is 220 nm. In...

a)
In a particular photoelectric effect experiment, photons with an
energy of 5.10 eV are incident on a metal surface, producing
photoelectrons with a maximum kinetic energy of 3.20 eV.
Calculate the work function of the metal.
_______ eV
b) In a particular photoelectric effect experiment, photons with
an energy of 5.10 eV are incident on a metal surface, producing
photoelectrons with a maximum kinetic energy of 3.20 eV. The photon
energy is then adjusted to 6.40 eV. Calculate the...

A) Within a photoelectric effect experiment, light shines on the
surface of a metal plate and the stopping voltage is
measured.
a) If the light intensity is decreased, what happens to the
stopping voltage?
decreases
increases
stays the same
not enough information
b) If the light intensity is decreased, what happens to the number
of electrons emitted?
decreases
increases
stays the same
not enough information
c) If the light wavelength is decreased, what happens to the KE of
the emitted...

a) A photoelectric surface has a work function of 3.30 x 10-19
J. What is the threshold frequency of this surface? (format of a.bc
x 10de Hz)
b) What is the stopping voltage of an electron that has 5.40 x
10-19 J of kinetic energy? (3 digit answer)
c) A photoelectric surface requires a light of maximum
wavelength of 675 nm to cause electron emission. What is the work
function (in eV) of this surface? (3 digit answer)
d) A...

Utilizing the photoelectric effect, a student fund that it
required light with a maximum wavelength of 351 nm to dislodge
electrons from a polished zinc metal surface. A) What is the work
function of this metal in joules? B) what is the velocity, in
m.s-1, of the ejected electron when incident radiation of 298 nm is
used (hint: me = 9.11 x 10 -31kg ). I dont need just the answer, I
got this wrong and need to know how...

The photoelectric work function of potassium is 2.1 eV. If light
that has a wavelength of 180 nm falls on potassium
Part A: Find the stopping potential for light of this wavelength
(V = ______ units)
Part B: Find the kinetic energy, in electron volts, of the most
energetic electrons ejected (K = ______ eV)
Part C: Find the speeds of these electrons (vmax = ______
units)

When ultraviolet light with a wavelength of 262 nm falls upon a
clean metal surface, the stopping potential necessary to terminate
the emission of photoelectrons is 0.172 V .What is the
photoelectric threshold wavelength for this metal? What is the work
function for the metal?

When monochromatic light of an unknown wavelength falls on a
sample of silver, a minimum potential of 2.50 V is required to stop
all of the ejected photoelectrons. Determine the (a) maximum
kinetic energy and (b) maximum speed of the ejected photoelectrons.
(c) Determine the wavelength in nm of the incident light. (The work
function for silver is 4.73 eV.)

When monochromatic light of an unknown wavelength falls on a
sample of silver, a minimum potential of 2.50 V is required to stop
all of the ejected photoelectrons. Determine the (a) maximum
kinetic energy and (b) maximum speed of the ejected photoelectrons.
(c) Determine the wavelength in nm of the incident light. (The work
function for silver is 4.73 eV.)

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 1 minute ago

asked 1 minute ago

asked 4 minutes ago

asked 7 minutes ago

asked 8 minutes ago

asked 8 minutes ago

asked 8 minutes ago

asked 9 minutes ago

asked 10 minutes ago

asked 11 minutes ago

asked 11 minutes ago

asked 11 minutes ago