Question

If a 3.5 gram ping pong ball were traveling to the right horizontally at 12 m/s,...

If a 3.5 gram ping pong ball were traveling to the right horizontally at 12 m/s, and a larger 12 g super ball were thrown directly behind it (also to the right) at 15 m/s so that the super ball bumped into and elastically collided with the ping pong ball, what would be the velocities of the two balls after the collision?

Homework Answers

Answer #1

(1) given data;

let final velocities of ping pong and super ball as;

Solution;

Apply conservation of linear momentum;

Apply conservation of energy;

by solving the above two equation we get final velocities of ball (1) and (2);

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A Ping-Pong ball moving East at a speed of 4 m/s collides with a stationary bowling...
A Ping-Pong ball moving East at a speed of 4 m/s collides with a stationary bowling ball. The Ping-Pong ball bounces back to the West, and the bowling ball moves very slowly to the East. Which object experiences the greater magnitude impulse during the collision? A car hits another and the two bumpers lock together during the collision. Is this an elastic or inelastic collision? In a game of pool, the white cue ball hits the #5 ball and stops,...
In a ballistic pendulum, a 100 g ball is traveling horizontally at 4.25 m/s and strikes...
In a ballistic pendulum, a 100 g ball is traveling horizontally at 4.25 m/s and strikes a stationary, 425 g pendulum, sticking to the pendulum after the collision. After the collision, what is the maximum change in the height of the center of mass of the pendulum+ball from what it is right after the collision?
A 4.80-kg ball, moving to the right at a velocity of +1.70 m/s on a frictionless...
A 4.80-kg ball, moving to the right at a velocity of +1.70 m/s on a frictionless table, collides head-on with a stationary 7.75-kg ball. Find the final velocities of the balls if the collision meet the following conditions. (a) elastic 4.8-kg ball =_________ m/s 7.75-kg ball =_________ m/s (b) completely inelastic _________m/s
A bowling ball with a mass of 4.0 kilograms is traveling at 8.0 m/s strikes a...
A bowling ball with a mass of 4.0 kilograms is traveling at 8.0 m/s strikes a larger bowling ball with a mass 6.0 kilograms which is at rest. After the collision, the smaller ball moves at an unknown velocity 30.0 degrees above the x-axis and the larger ball moves at an unknown velocity 13.0 degrees below the x-axis. What are the final velocities of each ball?
A ball (mass = 0.7 kg) traveling at 5 m/s toward a second ball (mass =...
A ball (mass = 0.7 kg) traveling at 5 m/s toward a second ball (mass = 0.25 kg) at rest. After collision, the 0.7 kg ball travels 29 degrees to the left of its original path, and the 0.25 kg ball travels at 34 degrees to the right of its original path. What are the final velocities of each ball after collision?
A 1.10-kg ball, moving to the right at a velocity of +1.34 m/s on a frictionless...
A 1.10-kg ball, moving to the right at a velocity of +1.34 m/s on a frictionless table, collides head-on with a stationary 6.90-kg ball. Find the final velocities of (a) the 1.10-kg ball and of (b) the 6.90-kg ball if the collision is elastic. (c) Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.
A 1.40-kg ball, moving to the right at a velocity of +2.87 m/s on a frictionless...
A 1.40-kg ball, moving to the right at a velocity of +2.87 m/s on a frictionless table, collides head-on with a stationary 6.70-kg ball. Find the final velocities of (a) the 1.40-kg ball and of (b) the 6.70-kg ball if the collision is elastic. (c) Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.
A 1.70-kg ball, moving to the right at a velocity of +1.51 m/s on a frictionless...
A 1.70-kg ball, moving to the right at a velocity of +1.51 m/s on a frictionless table, collides head-on with a stationary 8.10-kg ball. Find the final velocities of (a) the 1.70-kg ball and of (b) the 8.10-kg ball if the collision is elastic. (c) Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.
A 4.30-kg ball, moving to the right at a velocity of +3.01 m/s on a frictionless...
A 4.30-kg ball, moving to the right at a velocity of +3.01 m/s on a frictionless table, collides head-on with a stationary 8.50-kg ball. Find the final velocities of (a) the 4.30-kg ball and of (b) the 8.50-kg ball if the collision is elastic. (c) Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.
A 4.80-kg ball, moving to the right at a velocity of +1.26 m/s on a frictionless...
A 4.80-kg ball, moving to the right at a velocity of +1.26 m/s on a frictionless table, collides head-on with a stationary 8.20-kg ball. Find the final velocities of (a) the 4.80-kg ball and of (b) the 8.20-kg ball if the collision is elastic. (c)Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.