Question

Consider the Bohr model of the hydrogen atom for which an electron in the ground state...

Consider the Bohr model of the hydrogen atom for which an electron in the ground state executes uniform circular motion about a stationary proton at radius a0. (a) Find an expression for the kinetic energy of the electron in the ground state. (b) Find an expression for the potential energy of the electron in the ground state. (c) Find an expression for the ionization energy of an electron from the ground state of the hydrogen atom. The ionization energy is the energy required to remove the electron from the ground state to a position very far from the proton so that it has no kinetic energy. Using numerial values from the text, show that the it requires 13.6 eV to ionize an electron from the ground state of H.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Answer the following questions using the Bohr model of the hydrogen atom. a) A hydrogen atom...
Answer the following questions using the Bohr model of the hydrogen atom. a) A hydrogen atom is the n = 3 excited state when its electron absorbs a photon of energy 4.40 eV. Draw a diagram roughly to scale, of relevant energy levels for this situation. Make sure to show and label the initial energy of the H atom in the n=3 state, the energy level at which this atom loses its electron, and kinetic energy of the electron. b)What...
The ionization energy for a hydrogen atom in its ground state is 13.6 eV. Hence the...
The ionization energy for a hydrogen atom in its ground state is 13.6 eV. Hence the ionization energy for a ground-state He+ ion is? Please explain!
In the Bohr model of the hydrogen atom, an electron moves in a circular path around...
In the Bohr model of the hydrogen atom, an electron moves in a circular path around a proton. The speed of the electron is approximately 2.17 106 m/s. (a) Find the force acting on the electron as it revolves in a circular orbit of radius 0.532 ✕ 10−10 m. magnitude (b) Find the centripetal acceleration of the electron. magnitude
A hydrogen atom is in its ground state (n = 1). Using the Bohr theory of...
A hydrogen atom is in its ground state (n = 1). Using the Bohr theory of the atom, calculate (a) the radius of the orbit. (b) the velocity of the electron where vn = ?(kee2)/(mern) . (c) the kinetic energy of the electron (d) the static electric potential energy of the electron. (e) the total energy of the electron. (e) the energy gained by moving to a state where n = 5. (g) the wavelength, ?, of the EM waved...
Take the potential energy of a hydrogen atom to be zero for infinite separation of the...
Take the potential energy of a hydrogen atom to be zero for infinite separation of the electron and proton. Then the ground state energy of a hydrogen atom is –13.6 eV. The energy of the first excited state is: A) 0eV B) –3.4 eV C) –6.8 eV D) –10.2 eV E) –27 eV
Consider the Bohr model of the hydrogen atom in the ground state. Calculate the power radiated...
Consider the Bohr model of the hydrogen atom in the ground state. Calculate the power radiated classically (in the dipole approximation).
The ”most-probable” distance from the nucleus to observe the electron in a 1H hydrogen atom in...
The ”most-probable” distance from the nucleus to observe the electron in a 1H hydrogen atom in its ground state is the Bohr radius, a0= 5.29×10^−11m. What is the probability of observing the electron in a ground state hydrogen atom somewhere within any greater distance r from the nucleus a0 ≤ r <∞?
Consider the first three energy levels of hydrogen (n = 1, 2, 3). a) What photon...
Consider the first three energy levels of hydrogen (n = 1, 2, 3). a) What photon energies can be observed from transitions between these levels? Label these in increasing order as E1, E2, and E3. b) A hydrogen atom which is initially in the n = 2 level collides with an aluminum atom in its ground state (the kinetic energy of the collision is nearly zero). The hydrogen can drop to the n = 1 level and ionize the aluminum...
a hydrogen atom initially in its n=4 state absorbs a photon of wavlength 238.5 nm, which...
a hydrogen atom initially in its n=4 state absorbs a photon of wavlength 238.5 nm, which is enough to ionize it. how much kinetic energy in eV does the ejected electron have?
Question 1 In this question we undertake the Hydrogen Atom Model, developed in 1913 by Niels...
Question 1 In this question we undertake the Hydrogen Atom Model, developed in 1913 by Niels Bohr. a) Write the electric force reigning between the proton and the electron, in the hydrogen atom, in CGS system. Then equate this force, with the force expressed in terms of mass and acceleration, to come up with Bohr's equation of motion. Suppose that the electron orbit, around the proton, is circular. Use the following symbols, throughout. e: proton's or electron's charge intensity(4.8x 10-8...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT