Question

A charged particle moves uniformly through some region of space, meaning it travels at a constant...

A charged particle moves uniformly through some region of space, meaning it travels at a constant velocity. From this information, can we rule out the presence of an electric field within this region? Why or why not?

Can we rule out the presence of a magnetic field within this region? Why or why not?

Homework Answers

Answer #1

There is possibility such that both the electric and magnetic field present or only magnetic field is present in the region.

Case 1: When both the field is present.

In this case magnetic field should not be along the direction of the motion of charge particle. In such case, magnetic field exerts a magnetic force which will be perpendicular to the direction of velocity and magnetoc field itself. So there has to be an electric field opposite (considering +ve charge) this direction (direction of force) which will balance the magnetic force by the electric force. Hence when net force become zero, particle will move with constant velocity.

Case 2: When only magnetic field is present, it should be along the direction of motion so that it cant exert any force on the particle.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 6.70 −μC particle moves through a region of space where an electric field of magnitude...
A 6.70 −μC particle moves through a region of space where an electric field of magnitude 1250 N/C points in the positive x direction, and a magnetic field of magnitude 1.03 T points in the positive z direction. .If the net force acting on the particle is 6.22×10−3 N in the positive x direction, find the components of the particle's velocity. Assume the particle's velocity is in the x-y plane?
A 6.50 uC particle moves through a region of space where an electric field of magnitude...
A 6.50 uC particle moves through a region of space where an electric field of magnitude 1240 N/C points in the positive x direction, and a magnetic field of magnitude 1.11 T points in the positive z direction. If the net force acting on the particle is 6.06*10^-3 N in the positive x direction, calculate the magnitude of the particle's velocity. Assume the particle's velocity is in the x-y plane.
A 6.70 −μC particle moves through a region of space where an electric field of magnitude...
A 6.70 −μC particle moves through a region of space where an electric field of magnitude 1450 N/C points in the positive x direction, and a magnetic field of magnitude 1.23 T points in the positive z direction. If the net force acting on the particle is 6.25×10−3 N in the positive x direction, find the components of the particle's velocity. Assume the particle's velocity is in the x-y plane.
A 6.70 -microC particle moves through a region of space where an electric field of magnitude...
A 6.70 -microC particle moves through a region of space where an electric field of magnitude 1250 N/C points in the positive x direction, and a magnetic field of magnitude 1.24 T points in the positive z direction. If the net force acting on the particle is 6.25×10?3 N in the positive x direction, find the components of the particle's velocity. Assume the particle's velocity is in the x-y plane. vx, vy, vz =
A 6.50 −μC particle moves through a region of space where an electric field of magnitude...
A 6.50 −μC particle moves through a region of space where an electric field of magnitude 1400 N/C points in the positive x direction, and a magnetic field of magnitude 1.24 Tpoints in the positive z direction. If the net force acting on the particle is 6.21×10−3 N in the positive x direction, find the components of the particle's velocity. Assume the particle's velocity is in the x-y plane. Find vx,vy,vz
A 6.70 −μC particle moves through a region of space where an electric field of magnitude...
A 6.70 −μC particle moves through a region of space where an electric field of magnitude 1200 N/C points in the positive x direction, and a magnetic field of magnitude 1.25 T points in the positive z direction. If the net force acting on the particle is 6.21×10−3 N in the positive xx direction, find the components of the particle's velocity. Assume the particle's velocity is in the x-y plane. vx, vy, vz =   answer is 0,219,0 m/s why is...
A 6.60 −μC particle moves through a region of space where an electric field of magnitude...
A 6.60 −μC particle moves through a region of space where an electric field of magnitude 1250 N/C points in the positive x direction, and a magnetic field of magnitude 1.01 T points in the positive z direction. 1. If the net force acting on the particle is 6.25×10^−3 N in the positive x direction, find the components of the particle's velocity. Assume the particle's velocity is in the x-y plane. vx, vy, vz =   m/s  
A 6.70 −μC particle moves through a region of space where an electric field of magnitude...
A 6.70 −μC particle moves through a region of space where an electric field of magnitude 1500 N/C points in the positive x direction, and a magnetic field of magnitude 1.25 T points in the positive z direction. A)If the net force acting on the particle is 6.21×10−3 N in the positive x direction, find the components of the particle's velocity. Assume the particle's velocity is in the x-y plane. Enter your answers numerically separated by commas.
A 6.70 −μC particle moves through a region of space where an electric field of magnitude...
A 6.70 −μC particle moves through a region of space where an electric field of magnitude 1200 N/C points in the positive x direction, and a magnetic field of magnitude 1.25 T points in the positive z direction. If the net force acting on the particle is 6.24×10−3 N in the positive x direction, find the components of the particle's velocity. Assume the particle's velocity is in the x-y plane Find all three components and enter in Vx, Vy, Vz...
A positive charged particle carries 0.9 µC and moves with a kinetic energy of 0.06 J....
A positive charged particle carries 0.9 µC and moves with a kinetic energy of 0.06 J. It travels through a uniform magnetic field of B = 0.4 T. What is the mass of the particle (in kg )if it moves in the magnetic field in circular manner with a radius r = 4.1 m?