Question

A 2.05-cm-tall object is placed 30.0 cm to the left of a converging lens with a...

A 2.05-cm-tall object is placed 30.0 cm to the left of a converging lens with a focal length f1 = 21.0 cm . A diverging lens, with a focal length f2 = -42.5 cm , is placed 30.0 cm to the right of the first lens.
How tall is the final image of the object?________cm

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 2.05-cm-tall object is placed 30.0 cm to the left of a converging lens with a...
A 2.05-cm-tall object is placed 30.0 cm to the left of a converging lens with a focal length f1 = 20.5 cm . A diverging lens, with a focal length f2 = -42.5 cm , is placed 30.0 cm to the right of the first lens. Q:How tall is the final image of the object?
A 2.05-cm-tall object is placed 30.0 cm to the left of a converging lens with a...
A 2.05-cm-tall object is placed 30.0 cm to the left of a converging lens with a focal length f1 = 20.0 cm . A diverging lens, with a focal length f2 = -50.0 cm , is placed 30.0 cm to the right of the first lens. You may want to review (Pages 959 - 966) . How tall is the final image of the object?
A 1.8 cm tall object is placed 5 cm to the left of a converging lens...
A 1.8 cm tall object is placed 5 cm to the left of a converging lens (lens #1) with a focal length of 1.3 cm. To the right of this converging lens is a diverging lens (lens #2) that has a focal length of 2.6 cm. The diverging lens is placed 22.4 cm from the converging lens. Where is the final image, is it real or virtual, and is it upright or inverted?
1.Light with a wavelength of 626 nm passes through a slit 7.74 μm wide and falls...
1.Light with a wavelength of 626 nm passes through a slit 7.74 μm wide and falls on a screen 1.75 m away. Find the linear distance on the screen from the central bright fringe to the first bright fringe above it._________cm 2. A 2.05-cm-tall object is placed 30.0 cm to the left of a converging lens with a focal length f1 = 21.0 cm . A diverging lens, with a focal length f2 = -42.5 cm , is placed 30.0...
An object is placed 30 cm to the left of a converging lens of focal length...
An object is placed 30 cm to the left of a converging lens of focal length 10 cm. A diverging lens of focal length -15 cm is 20 cm to the right of the converging lens. a) Where is the image created by the first lens relative to the first lens? b) Is it real or virtual? c) Where is the final image relative to the second lens? d) Is it real or virtual? e) What is the final lateral...
A converging lens of focal length f1 = +22.5 cm is placed at a distance d...
A converging lens of focal length f1 = +22.5 cm is placed at a distance d = 60.0 cm to the left of a diverging lens of focal length f2 = −30.0 cm. An object is placed on the common optical axis of the two lenses with its base 45.0 cm to the left of the converging lens. (The thin-lens approximation may be assumed to hold.) (a) Calculate the location of the final image and its overall magnification with respect...
An object 2.00 cm high is placed 31.1 cm to the left of a converging lens...
An object 2.00 cm high is placed 31.1 cm to the left of a converging lens having a focal length of 26.1 cm. A diverging lens having a focal length of −20.0 cm is placed 110 cm to the right of the converging lens. (Use the correct sign conventions for the following answers.) (a) Determine the final position and magnification of the final image. (Give the final position as the image distance from the second lens.) Find final position in...
9. A diverging lens (f1 = −11.0 cm) is located 21.0 cm to the left of...
9. A diverging lens (f1 = −11.0 cm) is located 21.0 cm to the left of a converging lens (f2 = 23.5 cm). A 3.0-cm-tall object stands to the left of the diverging lens, exactly at its focal point. What is the height of the final image (including proper algebraic sign)? cm
A converging lens and a diverging lens, separated by a distance of 30.0 cm, are used...
A converging lens and a diverging lens, separated by a distance of 30.0 cm, are used in combination. The converging lens has a focal length of 15.2 cm. The diverging lens is of unknown focal length. An object is placed 19.3 cm in front of the converging lens; the final image is virtual and is formed 12.0 cm in front of the diverging lens. What is the focal length of the diverging lens?
A converging lens (f1 = 24.0 cm) is located 56.0 cm to the left of a...
A converging lens (f1 = 24.0 cm) is located 56.0 cm to the left of a diverging lens (f2 = −28.0 cm). An object is placed to the left of the converging lens, and the final image produced by the two-lens combination lies 22.1 cm to the left of the diverging lens. How far is the object from the converging lens?