Question

A 0.624 m string is clamped at both ends. If the lowest standing wave frequency in...

A 0.624 m string is clamped at both ends. If the lowest standing wave frequency in the string is 326 Hz, what is the wave speed?

Group of answer choices

619 m/s

505 m/s

407 m/s

203 m/s

102 m/s

Homework Answers

Answer #1

The answer according to your options is 407 m/s after approximating.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Standing waves on a 1.5-meter long string that is fixed at both ends are seen at...
Standing waves on a 1.5-meter long string that is fixed at both ends are seen at successive (that is, modes m and m + 1) frequencies of 38 Hz and 42 Hz respectively. The tension in the string is 720 N. What is the fundamental frequency of the standing wave? Hint: recall that every harmonic frequency of a standing wave is a multiple of the fundamental frequency. What is the speed of the wave in the string? What is the...
Oscillation of a 230 Hz tuning fork sets up standing waves in a string clamped at...
Oscillation of a 230 Hz tuning fork sets up standing waves in a string clamped at both ends. The wave speed for the string is 750 m/s. The standing wave has four loops and an amplitude of 1.6 mm. (a) What is the length of the string? (b) Write an equation for the displacement of the string as a function of position and time. Round numeric coefficients to three significant digits.
A standing wave is set up in a L=2.00m long string fixed at both ends. The...
A standing wave is set up in a L=2.00m long string fixed at both ends. The string vibrates in its 5th harmonic when driven by a frequency f=120Hz source. The mass of the string is m=3.5grams. Recall that 1kg = 1000grams. A. Find the linear mass density of the string B. What is the wavelength of the standing wave C. What is the wave speed D. What is the tension in the string E. what is the first harmonic frequency...
Will a standing wave be formed in a 6.0 m length of stretched string that transmits...
Will a standing wave be formed in a 6.0 m length of stretched string that transmits waves at a speed of 15 m/s if it is driven at a frequency of: a) 12 Hz or b) 15 Hz? Yes for a), no for b) No for a), yes for b) No for both a) and b). Yes for both a) and b).
part 1. A 9.00-m long string sustains a three-loop standing wave pattern as shown. The string...
part 1. A 9.00-m long string sustains a three-loop standing wave pattern as shown. The string has a mass of 45 g and under a tension of 50 N. a. What is the frequency of vibration? b. At the same frequency, you wish to see four loops, what tension you need to use. Part 2. a. Determine the shortest length of pipe, open at both ends, which will resonate at 256 Hz (so the first harmonics is 256Hz). The speed...
A standing wave on a string fixed at both ends is described by y(x,t)=2 sin((π/3)x)cos((π/3)t), where...
A standing wave on a string fixed at both ends is described by y(x,t)=2 sin((π/3)x)cos((π/3)t), where x and y are given in cm and time t is given in s. Answer the following questions a) Find the two simplest travelling waves which form the above standing wave b) Find the amplitude, wave number, frequency, period and speed of each wave(Include unit in the answer) c) When the length of the string is 12 cm, calculate the distance between the nodes...
The second harmonic standing wave on a particular string fixed at both ends is given by:...
The second harmonic standing wave on a particular string fixed at both ends is given by: y(x, t) = 0.01 sin(2π x) cos(200π t) (in SI units). a) Fill in the following information: λ2 = f2 = v = b) How long is the string, and what is its fundamental frequency? L =   f1 = c) This second harmonic wave has total energy E2. If the string is plucked so that has the first harmonic wave on it instead at...
A standing wave pattern is created on a string with mass density μ = 3 ×...
A standing wave pattern is created on a string with mass density μ = 3 × 10-4 kg/m. A wave generator with frequency f = 63 Hz is attached to one end of the string and the other end goes over a pulley and is connected to a mass (ignore the weight of the string between the pulley and mass). The distance between the generator and pulley is L = 0.68 m. Initially the 3rd harmonic wave pattern is formed....
A thin taut string of mass 5.00 g is fixed at both ends and stretched such...
A thin taut string of mass 5.00 g is fixed at both ends and stretched such that it has two adjacent harmonics of 525 Hz and 630 Hz. The speed of a traveling wave on the string is 168 m/s. (a) Determine which harmonic corresponds to the 630 Hz frequency. (b) Find the linear mass density of this string. (c) Find the tension in the string.
By experimentation, a physics student determines that the frequencies of two unspecified, but consecutive standing wave...
By experimentation, a physics student determines that the frequencies of two unspecified, but consecutive standing wave patterns on a particular string that is fixed at both ends are 62.7 Hz and 70.3 Hz . What would be the next higher frequency for which the string would have a standing wave? Express the answer in Hz. (Assume that the tension in the string is the same for all three standing wave patterns.)