Question

A balloon contains Helium (a monatomic ideal gas) at a pressure of 101325Pa and temperature of 20.0◦C. Please note that the pressure inside of a balloon must always equal the atmospheric pressure outside of the balloon.

(a) If the volume of the balloon is 0.015m3, how many moles of Helium are inside the balloon?

(b) What is the rms speed of the Helium in the balloon? (The
molar mass g

of Helium is 4.002602mol.)

(c) If the temperature of the system is increased to 25.0◦C what is the new volume of the balloon?

(d) How much heat was added to increase the temperature from 10◦C to 25◦C?

(e) What is the change in the entropy of the gas inside of the balloon?

Answer #1

in case of any doubt and confusion please comment. Thank you.

A closed piston-cylinder system contains a 120
moles of neon, a monatomic ideal gas, at pressure
PA = 2.5 atm
and volume VA = 0.80
m3. It undergoes the following cyclic
process:
A -> B: I
There is isothermal expansion to volume double of the original.
B -> C:
Constant-volume process back to its original pressure .
C -> A:
Constant-pressure process back to its initial state
a) Draw a Pressure volume diagram for the cycle. You
don't need to...

An ideal monatomic gas is contained within a cylinder by a
moveable piston. The gas is in thermal contact with a heat bath
initially at 310 K. What is the change in molar
entropy if the gas is heated to 600 K if:
A. The piston is blocked
B. The piston is allowed to move freely against atmospheric
pressure

Three moles of an ideal monatomic gas expand at a constant
pressure of 2.90atm : the volume of the gas changes from
3.30*10^-2m^3 to 4.50*10^-2m^3.
Part A, Calculate the initial temperature of the gas.
Part B, Calculate the final temperature of the gas.
Part C, Calculate the amount of work the gas does in
expanding.
Part D, Calculate the amount of heat added to the gas.
Part E, Calculate the change in internal energy of the gas.

20 moles of ideal helium gas are initially at standard
temperature and pressure. The gas undergoes a change such that the
pressure is doubled and the temperature is halved. (a) What is the
final volume in cubic meters? (b) lf the mass of a helium atom is
6.69 x 10'27 kg, what is the mean squared speed of the helium atoms
in the final state?

Three moles of a monatomic ideal gas are heated at a constant
volume of 2.90 m3. The amount of heat added is 5.10 103 J.
(a) What is the change in the temperature of the gas?
_____K
(b) Find the change in its internal energy.
_____J
(c) Determine the change in pressure.
_____Pa

17) Three moles of an ideal monatomic gas expand at a constant
pressure of 2.70 atm ; the volume of the gas changes from 3.10×10−2
m3 to 4.60×10−2 m3 .
Part A
Calculate the initial temperature of the gas.
Part B
Calculate the final temperature of the gas.
Part C
Calculate the amount of work the gas does in expanding.
Part D
Calculate the amount of heat added to the gas.
Part E
Calculate the change in internal energy of...

8. Three moles of a monatomic ideal gas are
heated at a constant volume of 2.10 m³. The amount of heat added is
5.3 x 10^3J. Determine the change in pressure.

A mole of a monatomic ideal gas is taken from an initial
pressure p and volume V to a final pressure 3p and volume 3V by two
different processes: (I) It expands isothermally until its volume
is tripled, and then its pressure is increased at constant volume
to the final pressure. (II) It is compressed isothermally until its
pressure is tripled, and then its volume is increased at constant
pressure to the final volume. Show the path of each process...

Rectangular PV Cycle
A piston contains 260 moles of an ideal monatomic gas that
initally has a pressure of 2.61 × 105 Pa and a volume of
4.9 m3. The piston is connected to a hot and cold
reservoir and the gas goes through the following quasi-static cycle
accepting energy from the hot reservoir and exhausting energy into
the cold reservoir.
1. The pressure of the gas is increased to 5.61 × 105
Pa while maintaining a constant volume.
2....

A tank contains one kilomole of a monatomic ideal gas, argon,
and has a pressure of 1 atm and a temperature of 300 K. The mass of
an argon atom is 6.63 x 10-26 kg.
a.) Calculate the internal energy, U, of the gas in Joules.
b.) Calculate the average energy per atom in eV. (1eV = 1.602 x
10-19 J)
c.) Calculate the partition function, Z.
d.) Calculate the entropy of the assembly, S

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 1 minute ago

asked 2 minutes ago

asked 2 minutes ago

asked 2 minutes ago

asked 2 minutes ago

asked 7 minutes ago

asked 7 minutes ago

asked 8 minutes ago

asked 8 minutes ago

asked 11 minutes ago

asked 11 minutes ago

asked 11 minutes ago