Question

A simple harmonic oscillator has a frequency of 11.1 Hz. It is oscillating along x, where...

A simple harmonic oscillator has a frequency of 11.1 Hz. It is oscillating along x, where x(t) = A cos(ωt + δ). You are given the velocity at two moments: v(t=0) = 1.9 cm/s and v(t=.1) = -18.1 cm/s.

1) Calculate A.

2) Calculate δ.

Homework Answers

Answer #1

v(t) = dx/dt = -Asin( t +)

=2*11.1 = 69.708Hz

At t= 0 v = 1.9cm/s =   -Asin( )

at t = .1 v = -18.1 = -Asin( *0.1+)

dividing both equation we get

9.526 = sin(6.9708) tan + cos(6.9709)

= 1.4984 rad

put in eqation 1 we get

A =0.0273cm

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A machine part is undergoing Simple Harmonic Motion with a frequency of 5.10 Hz and amplitude...
A machine part is undergoing Simple Harmonic Motion with a frequency of 5.10 Hz and amplitude 1.80 cm. (a) Determine the angular velocity “ω” of the oscillation.   (b)      What is the displacement of this oscillation at t=5 sec if it follows the part of x=A cos (ωt) with x=0 m at equilibrium?
A mass of 100 g is attached to a spring and oscillating with simple harmonic motion....
A mass of 100 g is attached to a spring and oscillating with simple harmonic motion. The position of the mass at all times is given by x(t) = (2.0 cm) cos(2t), where t is in seconds, and the 2 is in rad/s. Determine the following: (a) The amplitude (in cm). cm (b) The frequency. Hz (c) The maximum speed in cm/s. Think about the expression you can write for v(t). Where is the maximum velocity in that expression? You...
A particle performs simple harmonic oscillations along the x-axis about the equilibrium position of x=0. The...
A particle performs simple harmonic oscillations along the x-axis about the equilibrium position of x=0. The angular frequency of the oscillations (w) is 4 Hz. At t=0, the particle is observed to be at a position x0 = 25 cm, and traveling with a velocity v0 = 100 cm/s along the x-axis. Find the position and velocity of the particle at t = 2.4 s.
he equation of motion of a simple harmonic oscillator is given by x(t) = (7.4 cm)cos(12πt)...
he equation of motion of a simple harmonic oscillator is given by x(t) = (7.4 cm)cos(12πt) − (4.2 cm)sin(12πt), where t is in seconds.Find the amplitude. m (b) Determine the period. s (c) Determine the initial phase. °
A simple harmonic oscillator consists of a mass of 100g attached to a constant spring is...
A simple harmonic oscillator consists of a mass of 100g attached to a constant spring is 10^4 dynas/cm. At time t=0, the mass is about 3 cm from the equilibrium point and with an initial velocity of 5cm/s, both in the positive direction.A dissipative force is now added. Assume that you start moving from rest at the maximum amplitude position, and after oscillating for 10 s, your maximum amplitude is reduced to half of the initial value. Calculate: A- dissipation...
A damped harmonic oscillator of mass m has a natural frequency ω0, and it is tuned...
A damped harmonic oscillator of mass m has a natural frequency ω0, and it is tuned so that β = ω0. a) At t = 0, its position is x0 and its velocity is v0. Find x(t) for t > 0 b)If x0 = 0.2 m and ω0 = 3 s−1 , obtain a condition on v0 necessary for the oscillator to pass through the equilibrium position (x(t) = 0) at a finite time t.
A simple harmonic oscillator consists of a block of mass 3.70 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 3.70 kg attached to a spring of spring constant 410 N/m. When t = 1.60 s, the position and velocity of the block are x = 0.102 m and v = 3.050 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?
A simple harmonic oscillator consists of a block of mass 3.00 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 3.00 kg attached to a spring of spring constant 110 N/m. When t = 2.30 s, the position and velocity of the block are x = 0.127 m and v = 3.580 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?
A simple harmonic oscillator consists of a block of mass 2.90 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 2.90 kg attached to a spring of spring constant 280 N/m. When t = 2.20 s, the position and velocity of the block are x = 0.189 m and v = 3.000 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?
A simple harmonic oscillator consists of a block of mass 1.70 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 1.70 kg attached to a spring of spring constant 340 N/m. When t = 0.840 s, the position and velocity of the block are x = 0.101 m and v = 3.100 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT