Question

A proton moves through a region of space where there is a magnetic field B⃗ =(0.65i+0.37j)T...

A proton moves through a region of space where there is a magnetic field B⃗ =(0.65i+0.37j)T and an electric field E⃗ =(3.1i−4.4j)×103V/m. At a given instant, the proton's velocity is v⃗ =(5.4i+2.9j−5.1k)×103m/s. Find Fx, Fy, Fz in N

Homework Answers

Answer #1

The total force on the proton is

                     F = e(E + v x B)

                        = e{(3.1i -4.4j) x 103V/m + [(5.4i + 2.9j - 5.1k) x 103m/s x (00.65i + 0.37j)T]}

                        = (1.60 x 10-19C)[(3.0i - 4.2j) + (1.887i -3.315j 0.113k)] x 103V/m

                        =   (7.82i - 12.024j - 0.1808k)] x 10-16N.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A proton moves through a region of space where there is a magnetic field B⃗ =(0.57i+0.37j)T...
A proton moves through a region of space where there is a magnetic field B⃗ =(0.57i+0.37j)T and an electric field E⃗ =(2.7i−4.0j)×103V/m. At a given instant, the proton's velocity is v⃗ =(7.0i+2.8j−4.9k)×103m/s. Determine the components of the total force on the proton. Fx, Fy, Fz =
A proton moves through a region of space where there is a magnetic field B⃗ =(0.64i+0.40j)T...
A proton moves through a region of space where there is a magnetic field B⃗ =(0.64i+0.40j)T and an electric field E⃗ =(3.3i−4.5j)×103V/m. At a given instant, the proton's velocity is v⃗ =(6.6i+2.8j−4.8k)×103m/s. At a given instant, the proton's velocity is v⃗ =(6.6i+2.8j−4.8k)×103m/s. Determine the components of the total force on the proton. Express your answers using two significant figures. Enter your answers numerically separated by commas. Please circle the answer
A proton moves through a region of space where there is a magnetic field B⃗ =(0.64i+0.40j)T...
A proton moves through a region of space where there is a magnetic field B⃗ =(0.64i+0.40j)T and an electric field E⃗ =(3.3i−4.5j)×103V/m. At a given instant, the proton's velocity is v⃗ =(6.6i+2.8j−4.8k)×103m/s. Determine the components of the total force on the proton. Express your answers using two significant figures. Enter your answers numerically separated by commas.
A proton moves through a region of space where there is a magnetic field B=(0.41i+0.38j) T...
A proton moves through a region of space where there is a magnetic field B=(0.41i+0.38j) T and an electric field E=(2.9i−4.4j)×103V/m. At a given instant, the proton's velocity is V=(5.1i+2.9j−5.4k)×103m/s. Determine the components of the total force on the proton.
An electron with a velocity given by v⃗ =(1.6×105 m/s )x^+(6700 m/s )y^ moves through a...
An electron with a velocity given by v⃗ =(1.6×105 m/s )x^+(6700 m/s )y^ moves through a region of space with a magnetic field B⃗ ==(0.26 T )x^−(0.10 T )z^ and an electric field E⃗ =(220 N/C )x^. Using cross products, find the magnitude of the net force acting on the electron. (Cross products are discussed in Appendix A.) Express your answer using two significant figures.
A proton moves through a magnetic field at 21.1% of the speed of light. At a...
A proton moves through a magnetic field at 21.1% of the speed of light. At a location where the field has a magnitude of 0.00603 T and the proton's velocity makes an angle of 143∘ with the field, what is the magnitude ?B of the magnetic force acting on the proton? Use ?=2.998×108 m/s for the speed of light and ?=1.602×10−19 C as the elementary charge.
A proton moves through a region containing a uniform electric field given by  = 44.0 ĵ V/m...
A proton moves through a region containing a uniform electric field given by  = 44.0 ĵ V/m and a uniform magnetic field  = (0.200 î + 0.300 ĵ + 0.400 ) T. Determine the acceleration of the proton when it has a velocity  = 230 î m/s.
A proton moves through a region containing a uniform electric field given by  = 70.0 ĵ V/m...
A proton moves through a region containing a uniform electric field given by  = 70.0 ĵ V/m and a uniform magnetic field  = (0.200 î + 0.300 ĵ + 0.400 ) T. Determine the acceleration of the proton when it has a velocity  = 250 î m/s.
A proton moves through a region containing a uniform electric field given by  = 44.0 ĵ V/m...
A proton moves through a region containing a uniform electric field given by  = 44.0 ĵ V/m and a uniform magnetic field  = (0.200 î + 0.300 ĵ + 0.400 ) T. Determine the acceleration of the proton when it has a velocity  = 230 î m/s.
A proton moves through a region containing a uniform electric field given by E with arrow...
A proton moves through a region containing a uniform electric field given by E with arrow = 46.0 ĵ V/m and a uniform magnetic field B with arrow = (0.200 î + 0.300 ĵ + 0.400 k) T. Determine the acceleration of the proton when it has a velocity v with arrow = 190 î m/s.