Question

The wave function for a particle confined to a one-dimensional box located between x = 0...

The wave function for a particle confined to a one-dimensional box located between x = 0 and x = L is given by Psi(x) = A sin (n(pi)x/L) + B cos (n(pi)x/L) . The constants A and B are determined to be

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The wave function of a particle in a one-dimensional box of length L is ψ(x) =...
The wave function of a particle in a one-dimensional box of length L is ψ(x) = A cos (πx/L). Find the probability function for ψ. Find P(0.1L < x < 0.3L) Suppose the length of the box was 0.6 nm and the particle was an electron. Find the uncertainty in the speed of the particle.
            An electron is confined between x = 0 and x = L. The wave function...
            An electron is confined between x = 0 and x = L. The wave function of the electron is ψ(x) = A sin(2πx/L). The wave function is zero for the regions x < 0 and x > L. (a) Determine the normalization constant A. (b) What is the probability of finding the electron in the region 0 ≤ x ≤ L/8? { (2/L)1/2, 4.54%}
The state of a particle is completely described by its wave function Ψ(?,?) One-dimensional Schrodinger Equation--...
The state of a particle is completely described by its wave function Ψ(?,?) One-dimensional Schrodinger Equation-- answer the following questions: 2) Show that when U(x) = 0, and , is a solution to the one-?=2??/ℏΨ=?sin??dimensional Schrodinger equation. 3) Show that when U(x) = 0, and , is a solution to the one-?=2??/ℏΨ=?cos??dimensional Schrodinger equation. 4) Show that where A and B are constants is a solution to the Ψ=??+?Schrodinger equation when U(x) = 0, and when E = 0.
A particle is confined to the one-dimensional infinite potential well of width L. If the particle...
A particle is confined to the one-dimensional infinite potential well of width L. If the particle is in the n=2 state, what is its probability of detection between a) x=0, and x=L/4; b) x=L/4, and x=3L/4; c) x=3L/4, and x=L? Hint: You can double check your answer if you calculate the total probability of the particle being trapped in the well. Please answer as soon as possible.
The sides of a one dimensional quantum box (1-D) are in x=0, x=L. The probability of...
The sides of a one dimensional quantum box (1-D) are in x=0, x=L. The probability of observing a particle of mass m in the ground state, in the first excited state and in the 2nd excited state are 0.6, 0.3, and 0.1 respectively a) If each term contributing to the particle function has a phase factor equal 1 in t=0. What is the wave function for t>0? b) what is the probability of finding the particle at the position x=L/3...
For a particle in a one-dimensional box of width a, determine the probability of finding the...
For a particle in a one-dimensional box of width a, determine the probability of finding the particle in the right third of the box (between ‘2/3 a’ and ‘a’) if the particle is in the ground state. ( Given: Y(x)= sqrt(2/a) sin(npix/a) )
A particle is confined to the one-dimensional infinite potential well of the figure. If the particle...
A particle is confined to the one-dimensional infinite potential well of the figure. If the particle is in its ground state, what is the probability of detection between x = 0.20L and x = 0.65L?
A particle is confined in a one-dimensional potential that is proportional to the absolute value of...
A particle is confined in a one-dimensional potential that is proportional to the absolute value of ?, where ?(?) = ? |?|, and ? is a real, positive constant. Use the variational method with the trial wave function ?(?) = ? ?−??2, where ? is a normalization constant and ? is a real, positive parameter to estimate the ground-state energy of this system. Note that this potential is an even function.
Consider the time-dependent ground state wave function Ψ(x,t ) for a quantum particle confined to an...
Consider the time-dependent ground state wave function Ψ(x,t ) for a quantum particle confined to an impenetrable box. (a) Show that the real and imaginary parts of Ψ(x,t) , separately, can be written as the sum of two travelling waves. (b) Show that the decompositions in part (a) are consistent with your understanding of the classical behavior of a particle in an impenetrable box.
The normalized wave functions for the particle is in a 1D box of length L., with...
The normalized wave functions for the particle is in a 1D box of length L., with limits on x = 0 and x = L. V (x) = 0 for 0 <= x <= L and V (x) = Infinity elsewhere. The probability of a particle being between x = 0 and x = L / 8 in the ground quantum state (n = 1) should be calculated.