Question

The wave function for a particle confined to a one-dimensional box located between x = 0...

The wave function for a particle confined to a one-dimensional box located between x = 0 and x = L is given by Psi(x) = A sin (n(pi)x/L) + B cos (n(pi)x/L) . The constants A and B are determined to be

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The wave function of a particle in a one-dimensional box of length L is ψ(x) =...
The wave function of a particle in a one-dimensional box of length L is ψ(x) = A cos (πx/L). Find the probability function for ψ. Find P(0.1L < x < 0.3L) Suppose the length of the box was 0.6 nm and the particle was an electron. Find the uncertainty in the speed of the particle.
A particle is confined to the one-dimensional infinite potential well of width L. If the particle...
A particle is confined to the one-dimensional infinite potential well of width L. If the particle is in the n=2 state, what is its probability of detection between a) x=0, and x=L/4; b) x=L/4, and x=3L/4; c) x=3L/4, and x=L? Hint: You can double check your answer if you calculate the total probability of the particle being trapped in the well. Please answer as soon as possible.
For a particle in a one-dimensional box of width a, determine the probability of finding the...
For a particle in a one-dimensional box of width a, determine the probability of finding the particle in the right third of the box (between ‘2/3 a’ and ‘a’) if the particle is in the ground state. ( Given: Y(x)= sqrt(2/a) sin(npix/a) )
Consider the time-dependent ground state wave function Ψ(x,t ) for a quantum particle confined to an...
Consider the time-dependent ground state wave function Ψ(x,t ) for a quantum particle confined to an impenetrable box. (a) Show that the real and imaginary parts of Ψ(x,t) , separately, can be written as the sum of two travelling waves. (b) Show that the decompositions in part (a) are consistent with your understanding of the classical behavior of a particle in an impenetrable box.
The normalized wave functions for the particle is in a 1D box of length L., with...
The normalized wave functions for the particle is in a 1D box of length L., with limits on x = 0 and x = L. V (x) = 0 for 0 <= x <= L and V (x) = Infinity elsewhere. The probability of a particle being between x = 0 and x = L / 8 in the ground quantum state (n = 1) should be calculated.
An electron confined to a one-dimensional box has energy levels given by the equation En=n2h2/8mL2 where...
An electron confined to a one-dimensional box has energy levels given by the equation En=n2h2/8mL2 where n is a quantum number with possible values of 1,2,3,…,m is the mass of the particle, and L is the length of the box.    Calculate the energies of the n=1,n=2, and n=3 levels for an electron in a box with a length of 180 pm . Enter your answers separated by a comma. Calculate the wavelength of light required to make a transition...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤ x ≤ a and ψ(x)=0 for x ≤ -a and x ≥ a , where a and b are positive real constants. (a) Using the normalization condition, find b in terms of a. (b) What is the probability to find the particle at x = 0.33a in a small interval of width 0.01a? (c) What is the probability for the particle to be found...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤ x ≤ a and ψ(x)=0 for x ≤ -a and x ≥ a , where a and b are positive real constants. (a) Using the normalization condition, find b in terms of a. (b) What is the probability to find the particle at x = 0.33a in a small interval of width 0.01a? (c) What is the probability for the particle to be found...
For a particle in a one-dimensional box with the length of 30 Å, its wavefunction is...
For a particle in a one-dimensional box with the length of 30 Å, its wavefunction is ψ1+ψ3. What is the location (except x=0 and x =30 Å) where the probability to find this particle is 0?
II(20pts). Short Problems a) The lowest energy of a particle in an infinite one-dimensional potential well...
II(20pts). Short Problems a) The lowest energy of a particle in an infinite one-dimensional potential well is 4.0 eV. If the width of the well is doubled, what is its lowest energy? b) Find the distance of closest approach of a 16.0-Mev alpha particle incident on a gold foil. c) The transition from the first excited state to the ground state in potassium results in the emission of a photon with  = 310 nm. If the potassium vapor is...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT