Question

A uniform cylinder of mass 100 kg and radius 50 cm is mounted so it is...

A uniform cylinder of mass 100 kg and radius 50 cm is mounted so it is free to rotate about a fixed, horizontal axis that passes through the centers of its circular ends. A 10-kg block is hung from a massless cord that is wrapped around the cylinder’s circumference. When the block is released, the cord unwinds and the block accelerates downward. a) What is the block’s acceleration?

Homework Answers

Answer #1

The equation of motion for the falling block (mass m) is (tension in the cord is T):

m a = m g - T

The equation for the rotating cylinder (mass M, radius R, angular acceleration A):

1/2 M R^2 A = T R

because 1/2MR^2 is the moment of inertia for a solid cylinder about its axes and T R is the external torque.

When no slip occurs then R A = a, so this last equation becomes

1/2 M a = T


So now we have two equations for the two unknowns a and T:

ma = m g - T

1/2 Ma = T

Substituting the second expression for T in the first allows us to obtain the acceleration of the block, a:

m a = m g - 1/2 M a

(m + M/2) a = m g

a = m g /(m + M/2)

a = g/(1 + M/(2m))

a = 9.81 m/s^2 / ( 1 + 100kg/(2*10kg))

a = 1.64 ms^2

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A uniform cylinder of radius 21 cm and mass 23 kg is mounted so as to...
A uniform cylinder of radius 21 cm and mass 23 kg is mounted so as to rotate freely about a horizontal axis that is parallel to and 6.2 cm from the central longitudinal axis of the cylinder. (a) What is the rotational inertia of the cylinder about the axis of rotation? (b) If the cylinder is released from rest with its central longitudinal axis at the same height as the axis about which the cylinder rotates, what is the angular...
A uniform cylinder of radius 10 cm and mass 20 kg is mounted so as to...
A uniform cylinder of radius 10 cm and mass 20 kg is mounted so as to rotate freely about a horizontal axis that is parallel to and 5.0 cm from the central axis of the cylinder. (a) Draw a diagram showing the cylinder and the rotation axis. (b) What is the moment of inertia of the cylinder about the axis of rotation? (c) If the cylinder is released from rest with its central longitudnal axis at the same height about...
A wheel (disk) of radius 0.2 m and mass 1 kg are mounted on a frictionless...
A wheel (disk) of radius 0.2 m and mass 1 kg are mounted on a frictionless horizontal axis. A massless cord is wrapped around the wheel and attached to a 2 kg object that slides on a frictionless surface inclined at an angle of 60 degrees with the horizontal. What is the acceleration of the block as well as the angular acceleration of the wheel about its axis of rotation? Answer: 6.93 m/s^2, 34.64 rad/s^2
4. A massless rope is wrapped around a uniform solid cylinder that has radius of 30...
4. A massless rope is wrapped around a uniform solid cylinder that has radius of 30 cm and mass 10 kg, as shown in the figure. The cylinder begins to unwind when it is released and allowed to rotate. (a) What is the acceleration of the center of mass of the cylinder? (b) If 90 cm of rope is unwound from the cylinder as it falls, how fast is it rotating at this instant?
A solid cylinder of mass M and radius 2R rests on a horizontal table. A cord...
A solid cylinder of mass M and radius 2R rests on a horizontal table. A cord is attached by a yoke to a frictionless shaft that passes through the cylinder, so that it can rotate on the shaft. The cord passes through a disk-shaped pulley of mass M and radius R, which is mounted on a frictionless shaft that passes through its center. A block of mass M is suspended from the free end of the thread. The thread does...
A uniform spherical shell of mass M = 3.2 kg and radius R = 7.8 cm...
A uniform spherical shell of mass M = 3.2 kg and radius R = 7.8 cm can rotate about a vertical axis on frictionless bearings (see figure below). A massless cord passes around the equator of the shell, over a pulley of rotational inertia I = 3.0 ? 10?3 kg · m2 and radius r = 5.0 cm, and is attached to a small object of mass m = 0.60 kg. There is no friction on the pulley's axle; the...
A disc of radius R = 20.0 cm, mass M = 2.5kg is mounted on a...
A disc of radius R = 20.0 cm, mass M = 2.5kg is mounted on a frictionless, horizontal axle through O. A block of mass m = 5.0 kg is attached to a light string wrapped around the disc. When the block is released from rest from a height h = 2.25m above the floor, it accelerates  downward to hit the floor. A) What is the potential energy of the block (in units of J) before it is released? (Take the...
A solid cylinder of mass 1.6 kg and radius 35 cm is rotating counterclockwise around a...
A solid cylinder of mass 1.6 kg and radius 35 cm is rotating counterclockwise around a vertical axis running through the centers of its circular faces at 560 rev/min. A second solid cylinder of the same mass and radius is rotating clockwise around the same vertical axis running through the centers of its circular faces at 850 rev/min. If the cylinders couple so that they rotate about the same vertical axis, what is the angular velocity (in rev/min) of the...
A solid cylinder has a mass of 100 kg and radius 0.225m. The cylinder is attached...
A solid cylinder has a mass of 100 kg and radius 0.225m. The cylinder is attached to a frictionless horizontal axle. A long (light weight) cable is wrapped around the cylinder. Attached to the end of the cable is a 1.50 kg mass. The system is initially stationary. The hanging mass is then released. The mass pulls on the cable as it falls and this causes the cylinder to rotate. a) What is the velocity of the hanging mass after...
A uniform spherical shell of mass M = 17.0 kg and radius R = 0.310 m...
A uniform spherical shell of mass M = 17.0 kg and radius R = 0.310 m can rotate about a vertical axis on frictionless bearings (see the figure). A massless cord passes around the equator of the shell, over a pulley of rotational inertia I = 0.210 kg·m2 and radius r = 0.100 m, and is attached to a small object of mass m = 1.50 kg. There is no friction on the pulley's axle; the cord does not slip...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT