Question

Recall that |ψ|2dx is the probability of finding the particle that has normalized wave function ψ(x)...

Recall that |ψ|2dx is the probability of finding the particle that has normalized wave function ψ(x) in the interval x to x+dx. Consider a particle in a box with rigid walls at x=0 and x=L. Let the particle be in the first excited level and use ψn(x)=2L−−√sinnπxL

For which values of x, if any, in the range from 0 to L is the probability of finding the particle zero?

For which v alues of x is the probability highest?Express your answer in terms of the variable L. Enter your answers in ascending order separated by commas.

In parts A and B are your answers consistent with Figure 40.12 in the textbook?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Exercise 40.48 from Young/Freedman, University Physics with Modern Physics, 14e Consider a particle in a box...
Exercise 40.48 from Young/Freedman, University Physics with Modern Physics, 14e Consider a particle in a box with rigid walls at x=0 and x=L. Let the particle be in the ground level. Part A Calculate the probability |ψ|2dx that the particle will be found in the interval x to x+dx for x=L/4. (Express your answer in terms of the variables dx and L.) Part B Calculate the probability |ψ|2dx that the particle will be found in the interval x to x+dx...
The wave function of a particle in a one-dimensional box of length L is ψ(x) =...
The wave function of a particle in a one-dimensional box of length L is ψ(x) = A cos (πx/L). Find the probability function for ψ. Find P(0.1L < x < 0.3L) Suppose the length of the box was 0.6 nm and the particle was an electron. Find the uncertainty in the speed of the particle.
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤ x ≤ a and ψ(x)=0 for x ≤ -a and x ≥ a , where a and b are positive real constants. (a) Using the normalization condition, find b in terms of a. (b) What is the probability to find the particle at x = 0.33a in a small interval of width 0.01a? (c) What is the probability for the particle to be found...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤...
A particle is described by the wave function ψ(x) = b(a2 - x2) for -a ≤ x ≤ a and ψ(x)=0 for x ≤ -a and x ≥ a , where a and b are positive real constants. (a) Using the normalization condition, find b in terms of a. (b) What is the probability to find the particle at x = 0.33a in a small interval of width 0.01a? (c) What is the probability for the particle to be found...
The normalized wave functions for the particle is in a 1D box of length L., with...
The normalized wave functions for the particle is in a 1D box of length L., with limits on x = 0 and x = L. V (x) = 0 for 0 <= x <= L and V (x) = Infinity elsewhere. The probability of a particle being between x = 0 and x = L / 8 in the ground quantum state (n = 1) should be calculated.
Consider a wave packet of a particle described by the wavefunction ψ(x,0) = Axe^−(x^2/L^2), -∞ ≤  x...
Consider a wave packet of a particle described by the wavefunction ψ(x,0) = Axe^−(x^2/L^2), -∞ ≤  x ≤ ∞. a) Draw this wavefunction, labeling the axes in terms of A and L. b) Find the relationship between A and L that satisfies the normalization condition. c) Calculate the approximate probability of finding the particle between positions x = −L and x = L. d) What are 〈x〉, 〈x^2〉, and σ_x ? (Hint: use shortcuts where possible). e) Find the minimum uncertainty...
Consider the time-dependent ground state wave function Ψ(x,t ) for a quantum particle confined to an...
Consider the time-dependent ground state wave function Ψ(x,t ) for a quantum particle confined to an impenetrable box. (a) Show that the real and imaginary parts of Ψ(x,t) , separately, can be written as the sum of two travelling waves. (b) Show that the decompositions in part (a) are consistent with your understanding of the classical behavior of a particle in an impenetrable box.
The wave function of a particle is ψ (x) = Ne (-∣x∣ / a) e (iP₀x...
The wave function of a particle is ψ (x) = Ne (-∣x∣ / a) e (iP₀x / ℏ). Where a and P0 are constant; (e≃2,71 will be taken). a) Find the normalization constant N? b) Calculate the probability that the particle is between [-a / 2, a / 2]? c) Find the mean momentum and the mean kinetic energy of the particle in the x direction.
7. A particle of mass m is described by the wave function ψ ( x) =...
7. A particle of mass m is described by the wave function ψ ( x) = 2a^(3/2)*xe^(−ax) when x ≥ 0 0 when x < 0 (a) (2 pts) Verify that the normalization constant is correct. (b) (3 pts) Sketch the wavefunction. Is it smooth at x = 0? (c) (2 pts) Find the particle’s most probable position. (d) (3 pts) What is the probability that the particle would be found in the region (0, 1/a)? 8. Refer to the...
A free particle has the initial wave function Ψ(x, 0) = Ae−ax2 where A and a...
A free particle has the initial wave function Ψ(x, 0) = Ae−ax2 where A and a are real and positive constants. (a) Normalize it. (b) Find Ψ(x, t). (c) Find |Ψ(x, t)| 2 . Express your result in terms of the quantity w ≡ p a/ [1 + (2~at/m) 2 ]. At t = 0 plot |Ψ| 2 . Now plot |Ψ| 2 for some very large t. Qualitatively, what happens to |Ψ| 2 , as time goes on? (d)...