Question

The fan blades on a jet engine make one thousand revolutions in a time of 84.1...

The fan blades on a jet engine make one thousand revolutions in a time of 84.1 ms. What is the angular frequency of the blades?

Homework Answers

Answer #1

Given that the fan blades of the jet engine make 1000 revolutions in 84.1ms.

What is the angular frequency of the blades?

Angular frequency, , where is the frequency.

--------------

First, find the frequency

Frequency is the number of occurrences of an event in unit time.

-----------------------------

Angular frequency,

ANSWER:

==================================

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A.) The fan blades on commercial jet engines must be replaced when wear on these parts...
A.) The fan blades on commercial jet engines must be replaced when wear on these parts indicates too much variability to pass inspection. If a single fan blade broke during operation, it could severely endanger a flight. A large engine contains thousands of fan blades, and safety regulations require that variability measurements on the population of all blades not exceed ?2 = 0.18 mm2. An engine inspector took a random sample of 81 fan blades from an engine. She measured...
QUESTION 3 An electric fan is turned off, and it slows down from 356 revolutions/s to...
QUESTION 3 An electric fan is turned off, and it slows down from 356 revolutions/s to 80.1 revolutions/s in 4.07 seconds. How many times did the fan blades spin in this time? QUESTION 4 A disk rotates about a fixed axis through its center of mass and perpendicular to the disk. It starts from rest and accelerates uniformly, reaching angular speed ω after 8.44 revolutions. If it continues to accelerated at the same rate, how many more revolutions would it...
Starting from rest, a fan accelerates with constant angular acceleration. At one time it is rotating...
Starting from rest, a fan accelerates with constant angular acceleration. At one time it is rotating at 10 rev/s; 20 revolutions later, its angular speed is 150 rev/s. (a) The angular acceleration. (b) The time required by the fan to complete the 20 revelations. (c) The number of revolutions from rest until the fan reaches the 10 rev/s angular speed.
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude of 0.300 rev/s. The magnitude of the angular acceleration is 0.902 rev/s2. Both the the angular velocity and angular accleration are directed counterclockwise. The electric ceiling fan blades form a circle of diameter 0.800 m. Compute the fan's angular velocity magnitude after time 0.206 ss has passed. Express your answer numerically in revolutions per second. Through how many revolutions has the blade turned in...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude of 0.220 rev/s. The magnitude of the angular acceleration is 0.916 rev/s2. Both the angular velocity and angular acceleration are directed counterclockwise. The electric ceiling fan blades form a circle of diameter 0.710 m. Compute the fan's angular velocity magnitude after time 0.192 ss has passed. (Express your answer numerically in revolutions per second.) Through how many revolutions has the blade turned in the...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude of 0.290 rev/s . The magnitude of the angular acceleration is 0.887 rev/s2 . Both the the angular velocity and angular accleration are directed clockwise. The electric ceiling fan blades form a circle of diameter 0.760 m . a.) Compute the fan's angular velocity magnitude after time 0.209 s has passed. Express your answer numerically in revolutions per second. b.) Through how many revolutions...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude of 0.280 rev/s . The magnitude of the angular acceleration is 0.893 rev/ s 2 . Both the the angular velocity and angular accleration are directed clockwise. The electric ceiling fan blades form a circle of diameter 0.710 m . Part A Compute the fan's angular velocity magnitude after time 0.191 s has passed. Express your answer numerically in revolutions per second. Part B...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude of 0.200 rev/s . The magnitude of the angular acceleration is 0.895 rev/s2 . Both the the angular velocity and angular acceleration are directed counterclockwise. The electric ceiling fan blades form a circle of diameter 0.780 m . (a) Compute the fan's angular velocity magnitude after time 0.209 s has passed. (b)Through how many revolutions has the blade turned in the time interval 0.209...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude...
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude of 0.240 rev/s. The magnitude of the angular acceleration is 0.907 rev/s2rev/s2 . Both the angular velocity and angular acceleration are directed clockwise. The electric ceiling fan blades form a circle of diameter 0.740 m. Part A: Compute the fan's angular velocity magnitude after time 0.209 ss has passed. Part B: Through how many revolutions has the blade turned in the time interval 0.209...
Multiple-Concept Example 7 explores the approach taken in problems such as this one. The blades of...
Multiple-Concept Example 7 explores the approach taken in problems such as this one. The blades of a ceiling fan have a radius of 0.343 m and are rotating about a fixed axis with an angular velocity of +1.67 rad/s. When the switch on the fan is turned to a higher speed, the blades acquire an angular acceleration of +1.38 rad/s2. After 0.443 s have elapsed since the switch was reset, what is (a)the total acceleration (in m/s2) of a point...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT