Question

3. A line is uniformly charged with positive charge. This line of charge has a constant...

3. A line is uniformly charged with positive charge. This line of charge has a constant linear charge density of 84 C/m and extends along the positive y axis from 0 to L=8 cm. The electric field at position a=2 cm along the positive x axis makes an angle with it. Calculate such an angle (in degrees). (Coulomb’s constant k = 1/4πε0 = 8.99 × 109 N ∙ m2/C2).

Homework Answers

Answer #1

please like

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A thin rod 39.2 cm long is charged uniformly with a positive charge density of 46.0...
A thin rod 39.2 cm long is charged uniformly with a positive charge density of 46.0 ?C/m. The rod is placed along the y-axis and is centered at the origin. A charge of +43.0 ?C is placed 51.2 cm from the midpoint of the rod on the positive x-axis. Calculate the electric field at a point on the x-axis, which is halfway between the point charge and the center of the rod. (Express your answer in terms of the unit...
A uniformly charged disk of radius 25.0 cm carries a charge density of 6.50*10^-3 C/m^2. a)...
A uniformly charged disk of radius 25.0 cm carries a charge density of 6.50*10^-3 C/m^2. a) from the definition of the electric field, derive the expression for the net electric field along a perpendicular line going through the center of the disk. b) Calculate the electric field on the axis of the disk at 50.0 cm from the center of the disk. c) Calculate the electric field on the axis of the disk at 2.0m from the center of the...
A uniformly charged disk of radius 35.0 cm carries a charge density of 7.30 ✕ 10-3...
A uniformly charged disk of radius 35.0 cm carries a charge density of 7.30 ✕ 10-3 C/m2. Calculate the electric field on the axis of the disk at the following distances from the center of the disk. (a) 5.00 cm (b) 10.0 cm (c) 50.0 cm (d) 200 cm
A uniformly charged disk of radius 35.0 cm carries a charge density of 8.70 ✕ 10-3...
A uniformly charged disk of radius 35.0 cm carries a charge density of 8.70 ✕ 10-3 C/m2. Calculate the electric field on the axis of the disk at the following distances from the center of the disk. (a) 5.00 cm MN/C (b) 10.0 cm MN/C (c) 50.0 cm MN/C (d) 200 cm MN/C
A uniformly charged disk of radius 35.0 cm carries a charge density of 7.10 ✕ 10-3...
A uniformly charged disk of radius 35.0 cm carries a charge density of 7.10 ✕ 10-3 C/m2. Calculate the electric field on the axis of the disk at the following distances from the center of the disk. (a) 5.00 cm MN/C (b) 10.0 cm MN/C (c) 50.0 cm MN/C (d) 200 cm MN/C
A rod 12.0 cm long is uniformly charged and has a total charge of -25.0 µC....
A rod 12.0 cm long is uniformly charged and has a total charge of -25.0 µC. Determine the magnitude and direction of the electric field along the axis of the rod at a point 36.0 cm from its center. magnitude=?
An infinite line of positive charge lies along the y axis, with charge density λ =...
An infinite line of positive charge lies along the y axis, with charge density λ = 2.30 μC/m. A dipole is placed with its center along the x axis at x = 28.0 cm. The dipole consists of two charges ±10.0 μC separated by 2.00 cm. The axis of the dipole makes an angle of 45.0° with the x axis, and the positive charge is farther from the line of charge than the negative charge. Find the net force exerted...
A rod 12.0 cm long is uniformly charged and has a total charge of -21.0 µC....
A rod 12.0 cm long is uniformly charged and has a total charge of -21.0 µC. Determine the magnitude and direction of the electric field along the axis of the rod at a point 36.0 cm from its center. magnitude N/C
A uniformly charged, straight filament 6.60 m in length has a total positive charge of 2.00...
A uniformly charged, straight filament 6.60 m in length has a total positive charge of 2.00 µC. An uncharged cardboard cylinder 2.10 cm in length and 10.0 cm in radius surrounds the filament at its center, with the filament as the axis of the cylinder. (a) Using reasonable approximations, find the electric field at the surface of the cylinder. (b) Using reasonable approximations, find the total electric flux through the cylinder.
A long uniformly charged thread (linear charge density ? = 1.8 C/m ) lies along the...
A long uniformly charged thread (linear charge density ? = 1.8 C/m ) lies along the x axis in the figure.(Figure 1) A small charged sphere (Q = -2.1 C ) is at the point x=0cm, y=?5.0cm. What is the direction of the electric field at the point x=7.0cm, y=7.0cm? E? thread and E? Q represent fields due to the long thread and the charge Q, respectively. What is the magnitude of the electric field at the point x=7.0cm, y=7.0cm?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT