Question

A one-dimensional impenetrable box of length a contains an electron that suffers a small perturbation and...

A one-dimensional impenetrable box of length a contains an electron that suffers a small perturbation and emilts a photon frequency

v=3E1/h

where E1 energy of the grounfd state. From this would it be correct to conclude that the initial state of the electron is the n = 2 box state? why or why not?

Homework Answers

Answer #1

The energy levels of the electron in the impenetrable box(also known as infinite potential well) are

where is the energy of the ground state which has the quantum number

The state has energy

When the electron is initially in the state and jumps down to the state, it releases a photon that has energy

The frequency of the photon is

Thus the conclusion is correct that the initial state of the electron is the n = 2 box state and it jumps down to the ground state.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
We have an electron trapped in a one dimensional box, and is excited to the 2nd...
We have an electron trapped in a one dimensional box, and is excited to the 2nd (n = 2) state. What will be the length of the box if our electron has the same energy as a violet photon (404 nm)?
An electron is contained in a one-dimensional box of length 0.562 nm. (a) Draw an energy-level...
An electron is contained in a one-dimensional box of length 0.562 nm. (a) Draw an energy-level diagram for the electron for levels up to n = 4. (b) Photons are emitted by the electron making downward transitions that could eventually carry it from the n = 4 state to the n = 1 state. Find the wavelengths of all such photons: λ4 → 3, λ4 → 2, λ4 → 1, λ3 → 2, λ3 → 1, λ2 → 1 {149,...
When an electron trapped in a one-dimensional box transitions from its n = 2 state to...
When an electron trapped in a one-dimensional box transitions from its n = 2 state to its n = 1 state, a photon with a wavelength of 636.4 nm is emitted. What is the length of the box (in nm)? What If? If electrons in the box also occupied the n = 3 state, what other wavelengths of light (in nm) could possibly be emitted? Enter the shorter wavelength first. shorter wavelength  nmlonger wavelength  nm
An electron in a one-dimensional box has ground-state energy 1.80 eV . What is the wavelength...
An electron in a one-dimensional box has ground-state energy 1.80 eV . What is the wavelength of the photon absorbed when the electron makes a transition to the second excited state?
Consider a two-dimensional squared-well of dimensions L × L. The length L is such, that the...
Consider a two-dimensional squared-well of dimensions L × L. The length L is such, that the ground state energy of one electron confined in this box is 0.1eV. (a) Write down the 5 lowest energy states and their corresponding degeneracy (your energy values must all be different!) and label them E1 · · · E5 (b) If the electron finds itself in one of the states with energy E5, how much energy would be required to lift the electron from...
An electron confined to a one-dimensional box has energy levels given by the equation En=n2h2/8mL2 where...
An electron confined to a one-dimensional box has energy levels given by the equation En=n2h2/8mL2 where n is a quantum number with possible values of 1,2,3,…,m is the mass of the particle, and L is the length of the box.    Calculate the energies of the n=1,n=2, and n=3 levels for an electron in a box with a length of 180 pm . Enter your answers separated by a comma. Calculate the wavelength of light required to make a transition...
Consider a two-dimensional squared-well of dimensions L × L. The length L is such, that the...
Consider a two-dimensional squared-well of dimensions L × L. The length L is such, that the ground state energy of one electron confined in this box is 0.1eV. (a) Write down the 5 lowest energy states and their corresponding degeneracy (your energy values must all be different!) and label them E1 · · · E5 (b) If the electron finds itself in one of the states with energy E5, how much energy would be required to lift the electron from...
An electron moves with a speed v = 10-3c inside a one-dimensional box (V = 0)...
An electron moves with a speed v = 10-3c inside a one-dimensional box (V = 0) of length 4.85 nm. The potential is infinite elsewhere. The particle may not escape the box. What approximate quantum number does the electron have?
An electron confined in a one-dimensional box is observed, at different times, to have energies of...
An electron confined in a one-dimensional box is observed, at different times, to have energies of 32 eV , 72 eV , and 128 eV . What is the length of the box? Hint: Assume that the quantum numbers of these energy levels are less than 10. Answer should be in nm
A particle of mass m moves in a one-dimensional box of length L, with boundaries at...
A particle of mass m moves in a one-dimensional box of length L, with boundaries at x = 0 nm and x = 5 nm. Thus, V (x) = 0 for 0 ≤ x ≤ 5 nm, and V (x) = ∞ elsewhere. a) Can light excite a particle from its ground state to the fourth excited state? Mathematically support your answer. b) If the optical transition in (a) is possible, what is the required wavelength of light that generates...