Question

Suppose a star the size of our Sun, but of mass 8.0 times as great, was...

Suppose a star the size of our Sun, but of mass 8.0 times as great, was rotating at a speed of 1.0 revolution every 21 days. If it were to undergo gravitational collapse to a neutron star of radius 20 km, losing three quarters of its mass in the process, what would its rotation speed be? Assume that the star is a uniform sphere at all times and that the lost mass carries off no angular momentum.

Answer in rev/day

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose a star the size of our Sun, but with mass 8.0 times as great, were...
Suppose a star the size of our Sun, but with mass 8.0 times as great, were rotating at a speed of 1.0 revolution every 8.0 days. If it were to undergo gravitational collapse to a neutron star of radius 11 km , losing three-quarters of its mass in the process, what would its rotation speed be? Assume also that the thrown- off mass carries off either a) no angular momentum b)its proportional share three-quarters of the initial angular momentum Express...
Suppose a star the size of our Sun, but with mass 5.0 times as great, were...
Suppose a star the size of our Sun, but with mass 5.0 times as great, were rotating at a speed of 1.0 revolution every 15 days. If it were to undergo gravitational collapse to a neutron star of radius 14 km , losing three-quarters of its mass in the process, what would its rotation speed be? Assume also that the thrown- off mass carries off either Part A) No angular momentum Part B) its proportional share three-quarters of the initial...
Suppose a star the size of our Sun (r=7.0*105 km), but with mass 6.0 times as...
Suppose a star the size of our Sun (r=7.0*105 km), but with mass 6.0 times as great, were rotating at a speed of 1.0 revolution every 10 days. If it were to undergo gravitational collapse to a neutron star of radius 10 km, losing 2/3 of its mass in the process, what would its rotation period be in μs? Assume the star is a uniform sphere at all times. Assume also that the thrown-off mass carries off no angular momentum....
Astronomers detect stars that are rotating extremely rapidly, known as neutron stars. A neutron star is...
Astronomers detect stars that are rotating extremely rapidly, known as neutron stars. A neutron star is believed to form from the inner core of a larder star that collapsed, under its own gravitation, to a star of very small radius and very high density. Before collapse, suppose the ore of such a star is the size of our Sun (R = 7105km)with mass 2.0 times as great as the Sun, and is rotating at a frequency of 1.0 revolution every...
Consider a neutron star with a mass equal to 0.9 times the mass of the Sun,...
Consider a neutron star with a mass equal to 0.9 times the mass of the Sun, a radius of 15 km, and a rotation period of 1.3 s. What is the speed of a point on the equator of this neutron star? What is gg at the surface of this neutron star? A stationary 1.0 kg mass has a weight of 9.8 N on Earth. What would be its weight on the neutron star? How many revolutions per second are...
Neutron Star Physics Under some circumstances, an ordinary star can undergo gravitational collapse into an extremely...
Neutron Star Physics Under some circumstances, an ordinary star can undergo gravitational collapse into an extremely dense object made mostly of neutrons. This type of star is called a "neutron star". A neutron star has a mass density roughly 1014 times larger than that of ordinary solid matter. Suppose we represent an ordinary star as a uniform solid rigid sphere, both before and after the collapse. The original star's initial radius is 7.0 x 105 km (comparable to the size...
Suppose a star with the Sun’s mass and radius (the radius of the Sun is 6.96×108...
Suppose a star with the Sun’s mass and radius (the radius of the Sun is 6.96×108 m) is rotating with a period of 25 days. The star first blows off its outer layers and loses mass and angular momentum before the actual collapse, thereby reducing its radius while maintaining the same density. Then, with a mass that is 59 % of the Sun’s mass, it collapses to a white dwarf with a rotation period is 131 s. A) What is...
Under some circumstances, a star can collapse into an extremely dense object made mostly of neutrons...
Under some circumstances, a star can collapse into an extremely dense object made mostly of neutrons and called a neutron star. The density of a neutron star is roughly 1014 times as great as that of ordinary solid matter. Suppose we represent the star as a uniform, solid, rigid sphere, both before and after the collapse. The star's initial radius was 9.0×105 km (comparable to our sun); its final radius is 15 km . Part A If the original star...
a) In a little over 5 billion years, our star will slough off ~20% of its...
a) In a little over 5 billion years, our star will slough off ~20% of its mass and collapse to a white dwarf star of radius 8,000 km. We will model it as a sphere. What will its angular momentum be in terms of its current angular momentum? What will its rotation period be in terms of its current period? b) (12 points) What will its rotational kinetic energy be in terms of its current rotational kinetic energy?
Suppose a star of mass M at the end of its evolution collapses into a white...
Suppose a star of mass M at the end of its evolution collapses into a white dwarf, losing half its mass. In the cataclysmic end process the mass thrown off carries no angular momentum, but the core collapses to 1.0% of the original size of the star. a. If the original star rotated at a rate of once per 30 days, what would its new rotation rate be? b. What would be the ratio of its final rotational kinetic energy...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT